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The Prevalence of AI

Disease diagnose Game play

Autonomous driving Real-time translation



VGGNet

AlexNet

……

• Domain knowledge and excessive labor

• It is impossible to manually design specific arch. for each 
dedicated application in the era of AI democratization

Problem

Design arch. for dedicated application Era of AI Democratization

Human Invented Neural Architectures



Intelligent Edge
with Limited Computing Power

Controller 
(RNN)

Train a child network
with architecture

NN to get accuracy A

Sample architecture NN 
with probability p

Compute gradient of p and 
scale it by A to update 

the controller 

REF: Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." ICLR 2017

before convergence after convergence

Intelligent Cloud
with Enough Computing Power

• No constraint on hardware resource consumed

• NAS may not meet the design specifications in resource 
constraint environment

Problem

Identified
NN

Neural Architecture Search (NAS)
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Gap Between Neural Networks and Hardware Accelerators

Performance density almost stops increasing 

2

Number of DNN operations increases exponentially

Xiaowei Xu, Yukun Ding, Sharon Hu, Michael Niemier, Jason Cong, Yu Hu and Yiyu Shi, "Scaling of Deep Neural Networks for Edge Inference: A Race 
between Data Scientists and Hardware Architects", Nature Electronics 1, pp. 216-222, 2018.
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Gap Between Neural Networks and Hardware Accelerators

Number of DNN parameters increases exponentially

Energy efficiency of memory almost stops increasing 

Xiaowei Xu, Yukun Ding, Sharon Hu, Michael Niemier, Jason Cong, Yu Hu and Yiyu Shi, "Scaling of Deep Neural Networks for Edge Inference: A Race 
between Data Scientists and Hardware Architects", Nature Electronics 1, pp. 216-222, 2018.



Controller 
(RNN)

Train a child network
with architecture

NN to get accuracy A

Sample architecture NN 
with probability p

Compute gradient of p and 
scale it by A and E to update 

the controller 

REF: Mingxing Tan, et al. "MnasNet: Platform-Aware Neural Architecture Search for Mobile.” arXiv 2018

Predict the efficiency E
on a fixed hardware (e.g.
mobile phone)

• It works for particular fixed hardware, but not suitable for 
programmable hardware

Problem

Different Hardware 
Designs

Hardware-Aware NAS
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A Missing Link between Two Design Spaces

Neural Architecture Search Neural Architecture Implementation on Hardware



20132012 2014 2015 2016 2017 2018 2019
AlexNet GoogLeNetVGGNetZFNet

2020I. Human
Invented

II. Pure Automatically Explore 
Neural Architecture Space

III. Hardware-Aware
Neural Architecture Search

2018.Nov

proxylessNAS
from MIT

2018.Dec

FBNet
from UCB & 

Facebook

20192018.July

MnasNet
from Google

Neural Architecture 
Search (RL-based) 

DAC19 FNAS
from ND

IV. Co-Explore Neural Architecture Space 
and Hardware Design Space

……

Evolution of Exploring Deep Neural Architectures



FPGAs in DNN Applications
FPGA in Cloud Computing

[ref] Where Do FPGAs Stand in Auto IC Race? https://www.eetimes.com/document.asp?doc_id=1333419#
[ref] PYNQ in UAV. http://brennancain.com/pynqcopter-an-open-source-fpga-overlay-for-uavs/

FPGA in Edge Computing
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Controller (Maximzing Accuracy)
Number
of Filters

Layer N-1
…
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of Filters

Fast Level (Hardware Optimization)

Trainning
Accuracy “A”.Number

of Filters
Filter
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Stride
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Controller (Maximizing HW Efficiency)
Number
of Filters

Layer N-1
…

Number
of Filters Hardware

Optimization
and

Evaluation

“L” meet
time spec.?

Latency “L”

Yes
No

Term
inate

Slow Level (Software Optimization)

R= {
f(A,L)

f(L) not meet timing spec.

meet timing spec.

R = f(L)

Output: A pair of neural architecture and 
hardware design

FNAS

HW-Aware NAS vs. FPGA/Neural Architecture Co-Design (FNAS)

Output: A neural architecture

HW-Aware NAS

Trainning
Accuracy “A”.

R=f(A,L)

Number
of Filters

Filter
Size

Stride
Para.

Filter
Size

Layer N Layer N+1Layer N-1
… …

The controller (RNN)
Number
of Filters

Layer N-1
…

Number
of Filters

Test on fixed hardwa re

Latency “L”



Naïve Solution: HW-Aware + Exhaustively Evaluate Lat.

Challenges:

Functional 
Spec. HDL Synthesis Place & 

Route
HW 

Evaluation

Fig2. Procedure of performance evaluation

C3: Time-consuming evaluation!

Our Solution: FNAS tools to respond to challenges

 FNAS-Design
“Design on Program Logic”

FNAS-GG
“Tile-based Task Graph Generator”

FNAS-Sched
“Scheduler on Processing System”

FNAS-Analyzer
Estimate Performance “ L”

C2: Multi-FPGA design!
C1 C2

C2 C3

Fig1. Possible designs for Layer 5 of AlexNet on ZCU102

C1: Huge design space! Infeasible

Solutions & Challenges

Trainning
Accuracy “A”.

R=

Number
ofFilters

Filter
Size

Stride
Para.

Filter
Size

Layer N LayerN+1LayerN-1
… …

The controller (RNN)
Number
ofFilters
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…

Number
ofFilters

Latency “L”

“L” meet
time spec.？

Yes
No

terminate

{
f(A,L)

f(L) not meet timing spec.

meet timing spec.

Exhaustively
Evaluate
Latency

FNAS
Tool



REF: Chen Zhang et al. 2015. Optimizing fpga-based accelerator design 
for deep convolutional neural networks. In Proc. of FPGA. 

1. FPGAs with attributes including LUTs, DSPs, BRAM, etc.

2. A neural architecture with determined hyperparameters

……

Given：

On-chip accelerator design:

1. On-chip buffer allocation; 2. Accelerator size for computing
(note: both are determined by tiling parameters, Tm, Tn, Tr, Tc)

Determine：

N
Tn
Tn

1
2

Tr
R
Tc

C

1
2

3
4One layer:

Multiple layers: 

Weight Buffer

… …
Tm

IFM Buffer OFM Buffer

Computing parallelism

FNAS: Design Optimization (on-chip design)

Tn/Tm

Tn/Tm



layer 2 layer 3

… …
Tm

High-level graph abstraction

1. FPGAs with attributes including LUTs, DSPs, BRAM, etc.

2. A neural architecture with determined hyperparameters

……

Given：

FNAS: Graph Generator



1. FPGAs with attributes including LUTs, DSPs, BRAM, etc.

2. A neural architecture with determined hyperparameters

……

Given：

Schedule of tasks in graph on multiple FPGAs

FNAS: Schedule (off-chip design)



Latency = pipeline start time + processing time

1. FPGAs with attributes including LUTs, DSPs, BRAM, etc.

2. A neural architecture with determined hyperparameters

……

Given：

1. A tailored FPGA Design

2. The system latency

Output：

FNAS: Analyzer



MNIST CIFAR-10 ImageNet

Datasets

NAS Search Space

Layer Num.

Filter Size

Filter Num.

Channel Tiling Para. (Tm,Tn); Row Tiling Para. (Tr); Col Tiling Para. (Tc); Schedule

up to 5 up to 10 up to 15

[5, 7, 14] [1, 3, 5, 7] [1, 3, 5, 7]

[9, 18, 36] [24, 36, 48, 64] [16, 32, 64, 128]

[2, 5, 10, 20] [1.5, 2, 2.5, 10] [2.5, 5, 7.5, 10]

FPGAs Xilinx 7A50T Xilinx 7Z020

HW Search Space

Timing Spec. (ms)

Experimental Setting



up to 11.13X reduction
in search time

up to 7.81X reduction
in inference latency

below 0.9% loss
in accuracy

Different Hardware (MNIST) Different Datasets (7Z020) Compare to HW-Aware NAS
(CIFAR-10 + 7Z020)

FNAS can significantly 
push forward

the Pareto frontiers between 
accuracy and efficiency

tradeoff

below 1% loss
in accuracy

up to 10X reduction
in inference latency

Baseline: NAS
loose

Experimental Results



Experimental Results: Superior to Existing Approaches

Dataset Models Depth Parameters
Accuracy Accuracy

Pipeline Eff.
Energy Eff.

(Top1) (Top5) GOPS/W

CIFAR-10

Hardware-Aware NAS

Sequential Optimizatio

Co-Exploration (OptHW) 10 0.29M 80.18% -

Co-Exploration (OptSW) 85.19% - 92.15% 35.5 1.91

ImageNet

Hardware-Aware NAS

Sequential Optimization

Co-Exploration (OptHW) 96.15% 12.1 1.01

Co-Exploration (OptSW) 70.24% 93.89% 10.5 0.74

13 0.53M 84.53% - 92.20% 29.7 1.36

13 0.53M 84.53% - 73.27% 16.2 0.84

FPS

99.69% 35.5 2.55

14 0.61M

15 0.44M 68.40% 89.84% 81.07% 6.8 0.34

15 0.44M 68.40% 89.84% 86.75% 10.4 0.46

89.60%

15 0.48M 90.53%

17 0.54M 68.00%

Optimizing Network Accuracy

Comparison the proposed Co-Exploration with Hardware-Aware NAS and Heuristic Sequential Optimization

n

Optimizing Hardware Efficiency
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Experimental Results: Importance of Co-Exploration
Model Size

149k ~ 150k

Hardware Efficiency
7.02% ~ 98.53%

In the design space:

Models with similar model sizes may have distinct hardware efficiency

=> Cannot restrict model size to guarantee hardware efficiency
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2020

Co-Exploration of Neural Architectures

DAC’19 Best Paper Nomination

TCAD’20

FPGA/Neural Architecture Co-Exploration (FNAS)
Quantization Co-Exploration (ICCAD’19)

Heterogeneous ASIC Co-Exploration (DAC’20)

Network-on-Chip Co-Exploration (ASP-DAC’20 Best Paper Nomination)

Computing-in-Memory Co-Exploration (TC’20)

Secure Inference (ECAI’20)

Quantum Computer Co-Exploration Nature Communications’21, Nature (pending review)



Controller
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QuanNAS: Architecture-Hardware-Quantization Co-Exploration

D

Motivation

D

Co-Exploration Framework

FPGA Memory DSP

ZCU102 32.1Mb 2520

ZC706 19.1Mb 900

GT900 47Mb 1518/3036

GX320 17Mb 985/1970

VGG16Layer Activation

CONV3-64 96Mb

CONV3-128 51.2Mb

CONV3-256 25.6Mb

CONV3-512 12.8Mb

Number 
of Filters

Filter 
Height

Filter 
Width

Stride 
Height

Stride 
Width

Pooling 
Height

Pooling 
Width

Integer 
Width of 
Weight

Fractional 
Width of 
Weight

Integer 
Width of 

Activation

Fractional 
Width of 

Activation

Number 
of Filters

Layer N Layer N+1Layer N-1

Fractional 
Width of 

Activation



QuanNAS Results

Co exploration is more robust to 
quantization error

Hardware performance 
is maintained
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Co-Exploration of Neural Architectures

DAC’19 Best Paper Nomination

TCAD’20

FPGA/Neural Architecture Co-

Exploration (FNAS)
Quantization Co-Exploration (ICCAD’19)

Heterogeneous ASIC Co-Exploration (DAC’20)

Network-on-Chip Co-Exploration (ASP-DAC’20 Best Paper Nomination)

Computing-in-Memory Co-Exploration (TC’20)

Secure Inference (ECAI’20)
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NASAIC: NAS and Heterogeneous ASIC Accelerator Co-Exploration

D

What’s the problem Challenge1: ASIC has huge design space

Solution1: Create Template Pool to fix topology

Challenge2: Multiple tasks in application

Solution2: Simultaneously search architectures

Challenge3: Performance Model

Solution3: Maestro
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NASAIC: Exploration Flow

D

Framework

D

Controller

Accelerator 1 Accelerator 2
shidiannao?
nvdla?

row-station?

shidiannao?
nvdla?

row-station?

# of
filter

# of
skip Height # of

filter

…

# of
PEs

NoC
BWType # of

PEsType

…

……

Network 1 Network 2

…

Accelerator Designs

# of
filter

# of
filter

Maestro
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NASAIC: Results

D

Workloads

D

Result 1:

CIFAR-10: 92.85%
Nuclei (IOU): 0.8374

clo
se t

o lat
ency bound

(µ
m

2 )

(nJ)

(cycles)

CIFAR-10: 78.93%
Nuclei (IOU): 0.642

Design Specifications Explored Solutions by NASAIC

Best SolutionsLower bounds by the smallest architectures

• one classification task on CIFAR-10 dataset 
• one segmentation task on Nuclei dataset

Design Specifications

Latency: 8e5 cycles; Energy: 2e9 nJ; Area: 4e9 um^2

D

Result 2:
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Co-Exploration of Neural Architectures

DAC’19 Best Paper Nomination

TCAD’20

FPGA/Neural Architecture Co-

Exploration (FNAS)
Quantization Co-Exploration (ICCAD’19)

Heterogeneous ASIC Co-Exploration (DAC’20)

Network-on-Chip Co-Exploration (ASP-DAC’20 Best Paper Nomination)

Computing-in-Memory Co-Exploration (TC’20)

Secure Inference (ECAI’20)
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NANDS: Co-Explore NoC Design and Neural Architectures

D

Motivational Example

31.37% Improvement

• Timing Performance can be improved on 
platforms with more processing elements

• Communication becomes the performance 
bottleneck

• Fixed design leads lower performance

Observations:
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NANDS: Framework

Two exploration loops in NANDS:

n Loop I: Neural Architecture Search.

n Loop II: Automatic Hardware Design
① NAS Controller: predict hyperparameters
② NoC Design: generate hardware design (e.g.,

partition, mapping and routing)
③ Bottleneck Detection and Alleviation: maximize

throughput of NoC.
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NANDS: Results

NAS cannot guarantee timing performance NANDS can guide the controller to
make a better tradeoff between the
accuracy and throughput.

NANDS significantly pushes forward
Pareto frontiers, against HW-aware
NAS
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Co-Exploration of Neural Architectures

DAC’19 Best Paper Nomination

TCAD’20

FPGA/Neural Architecture Co-

Exploration (FNAS)
Quantization Co-Exploration (ICCAD’19)

Heterogeneous ASIC Co-Exploration (DAC’20)

Network-on-Chip Co-Exploration (ASP-DAC’20 Best Paper Nomination)

Computing-in-Memory Co-Exploration (TC’20.)

Secure Inference (ECAI’20)



Lower bounds by the smallest architectures Best SolutionsExplored Solutions by NASAICDesign SpecificationsCIFAR-10: 78.93%
Nuclei (IOU): 0.642(cycles)(nJ)(µm2)close to latency boundCIFAR-10: 92.85%

Nuclei (IOU): 0.8374
32

NACIM: Device-Circuit-Architecture Co-Exploration 

D

Cross-Layer Optimization

D

Results

…

(d)
Circuit

(e)
Device

0
1

1

2

2

3

3

0
2

2

4

4

6

6

(b)
Quantization

Activation Weight Activation Weight

…
weights

(a)
Neural

Architecture
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Group Conv.Standard Conv.
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Accumulation &
Output Buffer
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readout circuit

(c)
Data Flow IFM

…

OFM …

…

……

FC

…

TiN
HfOx

TiN
Switching layer

ReRAM

Gate

n+ n+p

FE layer
Meta l

FeFET

n+ n+p

Free layer
Barrier layer
Fixed layer

STT-MRAM

Variationsource line

word line

bit line

Noise and Hardware Aware

W/O consideration of device variation leading results useless

Performance Model: Modified NeuroSim
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Co-Exploration of Neural Architectures

DAC’19 Best Paper Nomination

TCAD’20

FPGA Implementation-Aware NAS

(FNAS)
Quantization Co-Exploration (ICCAD’19)

Heterogeneous ASIC Co-Exploration (TCAD’20)

Network-on-Chip Co-Exploration (ASP-DAC’20 Best Paper Nomination)

Computing-in-Memory Co-Exploration (TC’20)

Secure Inference (ECAI’20)
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NASS: Identifying Secure Inference Architecture via NAS

D

Secure Problem: garbled circuits & homomorphic encryption

• Computation complexity
• Bandwidth
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NASS: Framework and Results

• Determination of hyper-parameters and quantization
• Performance Modeling

• Improve accuracy by 3%
• Decrease 2X bandwidth requirement
• Decrease 2X computation time in server side



Conclusion and Future Work

FNAS

Neural Network
Architecture

Search From FPGA to ASIC
and Secure Cloud 

FNAS

AI Democratization

QuanNAS
NASAIC
NANDS
NASS

? ?New
HW Platforms
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