#### Hardware/Software Co-Design of Deep Learning Accelerators

Yiyu Shi, Ph.D. Professor, Dept. of Computer Science and Engineering, Site Director, NSF I/UCRC on Alternative and Sustainable Intelligent Computing, University of Notre Dame yshi4@nd.edu

#### The Prevalence of AI



Disease diagnose



Game play



Autonomous driving



**Real-time translation** 

## **Human Invented Neural Architectures**





Era of AI Democratization

#### Problem

- Domain knowledge and excessive labor
- It is impossible to manually design specific arch. for each dedicated application in the era of AI democratization

## **Neural Architecture Search (NAS)**



REF: Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." ICLR 2017

#### **Gap Between Neural Networks and Hardware Accelerators**





Xiaowei Xu, Yukun Ding, Sharon Hu, Michael Niemier, Jason Cong, Yu Hu and Yiyu Shi, "Scaling of Deep Neural Networks for Edge Inference: A Race between Data Scientists and Hardware Architects", Nature Electronics 1, pp. 216-222, 2018.



#### **Gap Between Neural Networks and Hardware Accelerators**





Xiaowei Xu, Yukun Ding, Sharon Hu, Michael Niemier, Jason Cong, Yu Hu and Yiyu Shi, "Scaling of Deep Neural Networks for Edge Inference: A Race between Data Scientists and Hardware Architects", Nature Electronics 1, pp. 216-222, 2018.



**Hardware-Aware NAS** 



REF: Mingxing Tan, et al. "MnasNet: Platform-Aware Neural Architecture Search for Mobile." arXiv 2018

#### A Missing Link between Two Design Spaces



Neural Architecture Search



Neural Architecture Implementation on Hardware

#### **Evolution of Exploring Deep Neural Architectures**



## **FPGAs in DNN Applications**

#### **FPGA in Cloud Computing**

#### **FPGA in Edge Computing**



#### Iref] Where Do FPGAs Stand In ABCR accorn https://www.ecomes.com/document.aspg\_id=13: [ref] PYNQar Usivente Janny Grsity norford Softron Damay-for-uavs/

#### HW-Aware NAS vs. FPGA/Neural Architecture Co-Design (FNAS)



**HW-Aware NAS** 

**FNAS** 

#### **Solutions & Challenges**



HW

Evaluation

## **FNAS: Design Optimization (on-chip design)**

#### Given:



**REF:** Chen Zhang et al. 2015. Optimizing fpga-based accelerator design for deep convolutional neural networks. In Proc. of FPGA.

1. FPGAs with attributes including LUTs, DSPs, BRAM, etc.



- 2. A neural architecture with determined hyperparameters

#### **On-chip accelerator design:**

#### Determine :

1. On-chip buffer allocation; 2. Accelerator size for computing (note: both are determined by tiling parameters, Tm, Tn, Tr, Tc)



#### **FNAS: Graph Generator**



#### Given:

1. FPGAs with attributes including LUTs, DSPs, BRAM, etc.

. . . . . .



<sup>2.</sup> A neural architecture with determined hyperparameters



#### **FNAS: Schedule (off-chip design)**



#### Given:

1. FPGAs with attributes including LUTs, DSPs, BRAM, etc.

. . . . . .



2. A neural architecture with determined hyperparameters





#### **FNAS: Analyzer**



#### Given:

1. FPGAs with attributes including LUTs, DSPs, BRAM, etc.

. . . . . .



2. A neural architecture with determined hyperparameters



Latency = pipeline start time + processing time

#### Output :

- 1. A tailored FPGA Design
- 2. The system latency

## **Experimental Setting**

| FPGAs             |               |                                                       | Xilinx 7A50T                     | Xilinx 7Z020           |
|-------------------|---------------|-------------------------------------------------------|----------------------------------|------------------------|
| Datasets          |               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                  | LIMI GENET             |
|                   |               | MNIST                                                 | CIFAR-10                         | ImageNet               |
|                   | Layer Num.    | up to 5                                               | up to 10                         | up to 15               |
| NAS Search Space  | Filter Size   | [5, 7, 14]                                            | [1, 3, 5, 7]                     | [1, 3, 5, 7]           |
|                   | Filter Num.   | [9, 18, 36]                                           | [24, 36, 48, 64]                 | [16, 32, 64, 128]      |
| HW Search Space   | Channel Tilir | ng Para. (Tm,Tn);                                     | Row Tiling Para. (Tr); Col Tilin | g Para. (Tc); Schedule |
| Timing Spec. (ms) |               | [2, 5, 10, 20]                                        | [1.5, 2, 2.5, 10]                | [2.5, 5, 7.5, 10]      |

**Experimental Results** 



## **Experimental Results: Superior to Existing Approaches**

|            | Comparison the propos   | eu Co-Expi |            | Iwale-Awale IV.    | AS and means       | ne sequential Optim | IIIZatioII |                       |
|------------|-------------------------|------------|------------|--------------------|--------------------|---------------------|------------|-----------------------|
| Dataset    | Models                  | Depth      | Parameters | Accuracy<br>(Top1) | Accuracy<br>(Top5) | Pipeline Eff.       | FPS        | Energy Eff.<br>GOPS/W |
|            | Hardware-Aware NAS      | 13         | 0.53M      | 84.53%             | _                  | 73.27%              | 16.2       | 0.84                  |
| CIFAR-10 — | Sequential Optimization | 13         | 0.53M      | 84.53%             | -                  | 92.20%              | 29.7       | 1.36                  |
|            | Co-Exploration (OptHW)  | 10         | 0.29M      | 80.18%             | -                  | 99.69%              | 35.5       | 2.55                  |
|            | Co-Exploration (OptSW)  | 14         | 0.61M      | 85. 19%            | _                  | 92.15%              | 35.5       | 1.91                  |
|            | Hardware-Aware NAS      | 15         | 0.44M      | 68.40%             | 89.84%             | 81.07%              | 6.8        | 0.34                  |
| ImageNet — | Sequential Optimization | 15         | 0.44M      | 68.40%             | 89.84%             | 86.75%              | 10.4       | 0.46                  |
|            | Co-Exploration (OptHW)  | 17         | 0.54M      | 68.00%             | 89.60%             | 96.15%              | 12.1       | 1.01                  |
|            | Co-Exploration (OptSW)  | 15         | 0.48M      | 70.24%             | 90.53%             | 93.89%              | 10.5       | 0.74                  |
|            |                         |            |            |                    |                    |                     |            |                       |

**Optimizing Hardware Efficiency** xploration with Hardware-Aware NAS and Heuristic Sequential Optimization Company

#### Optimizing Network Accuracy

#### **Experimental Results: Importance of Co-Exploration**



#### In the design space:

Models with similar model sizes may have distinct hardware efficiency

=> Cannot restrict model size to guarantee hardware efficiency

#### **Co-Exploration of Neural Architectures**



#### **QuanNAS: Architecture-Hardware-Quantization Co-Exploration**



21

# **QuanNAS Results**

 Table 3: Implementation information of the sampled designs. For network A and B, the designs are found by quantization search to certain architectures in Table 2. For D, E and F, the quantization and implementation on hardware are designed together with their architectures. The quantization details are shown in Figure 4.

 Co exploration is more robust to

|           |         |               |                      |                     |         | quantization erro     | or                     |
|-----------|---------|---------------|----------------------|---------------------|---------|-----------------------|------------------------|
| Design    | rL      | $\mathbf{rT}$ | Acc w/o quantization | Acc w/ quantization | #LUTs   | Throughput (frames/s) | parameter size (kbits) |
| A1-d1     | 100,000 | 500           | 87.76%               | 80.23%              | 99,871  | 556                   | 1,867                  |
| $A_1-d_2$ | 100,000 | 1000          | 87.76%               | 25.79%              | 99,848  | 1157                  | 1,189                  |
| $B_1-d_1$ | 100,000 | 500           | 89.71%               | 87.64%              | 96,904  | 512                   | 3,463                  |
| $B_1-d_2$ | 100,000 | 1000          | 89.71%               | 64.35%              | 98,752  | 1020                  | 2,784                  |
| $B_1-d_3$ | 300,000 | 2000          | 89.71%               | 50.93%              | 285,441 | 2083                  | 2,835                  |
| D         | 30,000  | 1000          | 83.65%               | 82.98%              | 29,904  | 1293                  | 457                    |
| E         | 100,000 | 1000          | 86.99%               | 82.76%              | 94,496  | 1042                  | 1,923                  |
| F         | 300,000 | 2000          | 87.03%               | 84.92%              | 299,860 | 2089                  | 1,217                  |
|           |         |               |                      |                     |         |                       | Hardware performa      |

Hardware performance is maintained

## **Co-Exploration of Neural Architectures**



## **NASAIC: NAS and Heterogeneous ASIC Accelerator Co-Exploration**



Challenge1: ASIC has huge design space Solution1: Create Template Pool to fix topology

Challenge2: Multiple tasks in application Solution2: Simultaneously search architectures

Challenge3: Performance Model

Solution3: Maestro

#### **NASAIC: Exploration Flow**



#### **NASAIC: Results**

#### Workloads

- one classification task on CIFAR-10 dataset
- one segmentation task on Nuclei dataset

#### **Design Specifications**

Latency: 8e5 cycles; Energy: 2e9 nJ; Area: 4e9 um^2

#### Result 2:

Table I: Comparison between successive NAS and ASIC design (NAS $\rightarrow$ ASIC), ASIC design followed by hardware-aware NAS (ASIC $\rightarrow$ HW-NAS), and NASAIC.

| Work. | Approach           | Hardware                        | Dataset  | Accuracy | L /cycles    | E/nJ         | A $/\mu m^2$ |
|-------|--------------------|---------------------------------|----------|----------|--------------|--------------|--------------|
|       |                    | $\langle dla, 2112, 48 \rangle$ | CIFAR-10 | 94.17%   | 9.45e5       | 3.56e9       | 4.71e9       |
|       | NAS → ASIC         | $\langle shi, 1984, 16 \rangle$ | Nuclei   | 83.94%   | ×            | ×            | ×            |
| W1    | $ASIC \rightarrow$ | $\langle dla, 1088, 24 \rangle$ | CIFAR-10 | 91.98%   | 5.8e5        | 1.94e9       | 3.82e9       |
| VV 1  | HW-NAS             | $\langle shi, 2368, 40 \rangle$ | Nuclei   | 83.72%   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|       | NASAIC             | $\langle dla, 576, 56 \rangle$  | CIFAR-10 | 92.85%   | 7.77e5       | 1.43e9       | 2.03e9       |
|       | INISAIC            | $\langle shi, 1792, 8 \rangle$  | Nuclei   | 83.74%   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|       |                    |                                 | •        |          | •            |              | •            |



## **Co-Exploration of Neural Architectures**



## NANDS: Co-Explore NoC Design and Neural Architectures



(b) The timing performance of network implementations on different platforms

#### **Observations:**

- Timing Performance can be improved on platforms with more processing elements
- Communication becomes the performance bottleneck
- Fixed design leads lower performance



## **NANDS: Framework**



Two exploration loops in NANDS:

- Loop I: Neural Architecture Search.
- Loop II: Automatic Hardware Design



- 1 NAS Controller: predict hyperparameters
- 2 NoC Design: generate hardware design (e.g., partition, mapping and routing)
- ③ Bottleneck Detection and Alleviation: maximize throughput of NoC.

#### **NANDS: Results**



30

## **Co-Exploration of Neural Architectures**



#### **NACIM: Device-Circuit-Architecture Co-Exploration**



| esults<br>Noise and Hardware Aware                    |                                                                           |           |                 |                  |        |          |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------------|-----------|-----------------|------------------|--------|----------|--|--|
| Approch                                               | Acouroou                                                                  | Acc w/    | Area            | EDP              | Speed  | ЕЕ.      |  |  |
| Approach                                              | Accuracy                                                                  | variation | $(\mu m^2)$     | (pJ*ns)          | (TOPs) | (TOPs/W) |  |  |
| QuantNAS                                              | 84.92%                                                                    | 8.48%     | $3.24 * 10^{6}$ | $8.08 * 10^{12}$ | 0.285  | 5.14     |  |  |
| pNAS                                                  | 73.88%                                                                    | 70.76%    | $2.07 * 10^{6}$ | $4.18 * 10^{12}$ | 0.110  | 7.14     |  |  |
| NACIM <sub>hw</sub>                                   | 73.58%                                                                    | 70.12%    | $1.78*10^6$     | $2.21 * 10^{12}$ | 0.204  | 12.3     |  |  |
| NACIM <sub>sw</sub>                                   | 73.88%                                                                    | 73.45%    | $1.97*10^6$     | $3.76 * 10^{12}$ | 0.234  | 16.3     |  |  |
| 0.45                                                  | 0.45                                                                      |           |                 |                  |        |          |  |  |
| 0.40 -<br>E 0.35 -                                    |                                                                           |           |                 | ~ ×              |        |          |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                                           |           |                 |                  |        |          |  |  |
| 0.                                                    | 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50<br>Normalized Hardware Efficiency |           |                 |                  |        |          |  |  |

Performance Model: Modified NeuroSim

## **Co-Exploration of Neural Architectures**



#### **NASS: Identifying Secure Inference Architecture via NAS**



#### **NASS: Framework and Results**



|               | Gazelle                  |                | Best Searched by NASS |                          |          |  |  |
|---------------|--------------------------|----------------|-----------------------|--------------------------|----------|--|--|
| Layer         | Dimension                | Quant.         | Layer                 | Dimension                | Quant.   |  |  |
| CR            | $(64 \times 3 \times 3)$ | 23             | CR                    | $(24 \times 5 \times 3)$ | (8, 8)   |  |  |
| CR            | $(64 \times 3 \times 3)$ | 23             | CR                    | $(48 \times 3 \times 5)$ | (6, 7)   |  |  |
| $_{\rm PL}$   | $(2 \times 2)$           | 23             | PL                    | $(2 \times 2)$           | (8, 8)   |  |  |
| CR            | $(64 \times 3 \times 3)$ | 23             | CR                    | $(48 \times 5 \times 7)$ | (7, 6)   |  |  |
| $\mathbf{CR}$ | $(64 \times 3 \times 3)$ | 23             | CR                    | $(36 \times 3 \times 3)$ | (6, 5)   |  |  |
| $_{\rm PL}$   | $(2 \times 2)$           | 23             | PL                    | $(2 \times 2)$           | (8, 8)   |  |  |
| $\mathbf{CR}$ | $(64 \times 3 \times 3)$ | 23             | CR                    | $(24 \times 7 \times 1)$ | (4, 6)   |  |  |
| $\mathbf{CR}$ | $(64 \times 3 \times 3)$ | 23             |                       |                          |          |  |  |
| $\mathbf{FC}$ | $(1024 \times 10)$       | 23             | FC                    | $(1024 \times 10)$       | (16, 16) |  |  |
|               | Accuracy: 81.6%          | 70             | Accuracy: 84.6%       |                          |          |  |  |
| Ban           | dwidth: 1.815 G          | Bytes          | Bandwidth: 977 MB     |                          |          |  |  |
| F             | PAHE Time: 3.2           | $2 \mathrm{s}$ | PAHE Time: 1.62 s     |                          |          |  |  |
|               | GC Time: $13.2$          | s              | GC Time: 6.38 s       |                          |          |  |  |
| r             | Total Time: 16.4         | 1 s            | Total Time: 8.0 s     |                          |          |  |  |

- Improve accuracy by 3%
- Decrease 2X bandwidth requirement
- Decrease 2X computation time in server side

- Determination of hyper-parameters and quantization
- Performance Modeling

#### **Conclusion and Future Work**



## Selected works from our group on this topic

[1] Weiwen Jiang, Xinyi Zhang, Edwin H.-M. Sha, Qingfeng Zhuge, Lei Yang, Yiyu Shi and Jingtong Hu, "Accuracy vs. Efficiency: Achieving Both through FPGA-Implementation Aware Neural Architecture Search," in Proc. of **DAC 2019**. (Best Paper Nomination)

[2] Weiwen Jiang, Edwin Sha, Xinyi Zhang, Lei Yang, Qingfeng Zhuge, Yiyu Shi and Jingtong Hu, "Achieving Super-Linear Speedup across Multi-FPGA for Real-Time DNN Inference," **CODES+ISSS 2019** and **ACM TECS (Best Paper Nomination)** 

[3] Lei Yang, Weiwen Jiang, Weichen Liu, Edwin Sha, Yiyu Shi and Jingtong Hu, "Co-Exploring Neural Architecture and Network-on-Chip Design for Real-Time Artificial Intelligence," ASP-DAC 2020 (Best Paper Nomination)

[5] Qing Lu, Weiwen Jiang, Xiaowei Xu, Yiyu Shi and Jingtong Hu, "On Neural Architecture Search for Resource-Constrained Hardware Platforms," in Proc. of **ICCAD 2019** (Invited Paper)

[6] Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Shouzhen Gu, Sakyasingha Dasgupta, Yiyu Shi, Jingtong Hu, "Hardware/Software Co-Exploration of Neural Architectures, IEEE Trans. Of Computer Aided Design of Integrated Circuits and Systems, 2020

[7] Weiwen Jiang, Qiuwen Lou, Zheyu Yan, Lei Yang, Jingtong Hu, Xiaobo Sharon Hu, Yiyu Shi, "Device-Circuit-Architecture Co-Exploration for Computing-in-Memory Neural Accelerators". IEEE Trans. on Computers, 2020

[8] Song Bian, Weiwen Jiang, Qing Lu, Yiyu Shi, and Takashi Sato, "NASS: Optimizing Secure Inference via Neural Architecture Search", in Proc. of ECAI, 2020.

37

[9], "Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks", in Proc. of DAC 2020



## Selected works from our group on this topic

[10] Weiwen Jiang, Lei Yang, Sakyasingha Dasgupta, Jingtong Hu and Yiyu Shi, "Standing on the Shoulders of Giants: Hardware and Neural Architecture Co-Search with Hot Start," in Proc. of International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2020

[11] Xiaowei Xu, Yukun Ding, Sharon Hu, Michael Niemier, Jason Cong, Yu Hu and Yiyu Shi, "Scaling of Deep Neural Networks for Edge Inference: A Race between Data Scientists and Hardware Architects", Nature Electronics 1, pp. 216-222, 2018.

[12] Weiwen Jiang, Bike Xie, Chun-Chen Liu and Yiyu Shi, "Integrating Memristors and CMOS for Better AI," Nature Electronics, September 2019

[13] Yukun Ding, Weiwen Jiang, Qiuwen Lou, Jinglan Liu, Jinjun Xiong, Xiaobo Sharon Hu, Xiaowei Xu, and Yiyu Shi, "Hardware design and the competency awareness of a neural network," Nature Electronics, 3, pp. pages514–523, 2020.

[14] Weiwen Jiang, Jinjun Xiong and Yiyu Shi, "A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage," Nature Communications, 2021

# **Thank You!**