1. Divisibility in modular arithmetic

In this chapter, we’ll discuss division. Division is more difficult than addition, subtraction, and multiplication. We want to see when we can make sense of a fraction \(\frac{a}{b} \) (mod \(m \)). Further, when we can make sense of \(\frac{a}{b} \), we want to see how to compute \(\frac{a}{b} \).

1.1. Introduction to Division. We would like to say that \(\frac{a}{b} \equiv x \) (mod \(m \)) if \(b \cdot x \equiv a \) (mod \(m \)). The idea is that if \(b \cdot x \equiv a \) (mod \(m \)), and we divide each side by \(b \), we should get:

\[
\frac{b}{b} \cdot x \equiv \frac{a}{b} \pmod{m}.
\]

If \(\frac{b}{b} \equiv 1 \) (mod \(m \)), this gives:

\[
1 \cdot x \equiv \frac{a}{b} \pmod{m}.
\]

\[
x \equiv \frac{a}{b} \pmod{m}.
\]

As we’ll see in this Unit, this only works when \(b \) and \(m \) are relatively prime. We’ll see why division is more subtle than it appears, and learn to compute \(\frac{a}{b} \) (mod \(m \)) when \(b \) and \(m \) are relatively prime. For now, we’ll keep the following idea:

If \(\frac{a}{b} \equiv x \) (mod \(m \)), then

\[
a \equiv b \cdot x \pmod{m}.
\]

EXAMPLE: \(\frac{2}{3} \equiv 4 \) (mod 5), so \(2 \equiv 3 \cdot 4 \) (mod 5).

You can check for yourself that \(2 \equiv 3 \cdot 4 \) (mod 5).

1.2. Reciprocals. The easiest way to think about the fraction \(\frac{a}{b} \) is to first understand the fraction \(\frac{1}{b} \). Once we have understood \(\frac{1}{b} \) (mod \(m \)), then we will set \(\frac{a}{b} \equiv a \cdot \frac{1}{b} \) (mod \(m \)).

We say \(a \equiv \frac{1}{b} \) (mod \(m \)) if \(b \cdot a \equiv 1 \) (mod \(m \)).

EXAMPLE: Compute \(\frac{1}{3} \) (mod 5).

To answer this, let’s take a look at the mod 5 multiplication table from Unit 11:
We look for a mod 5 number \(x \) so that \(3 \cdot x \equiv 1 \) (mod 5). If we look in the 3-row, we find 1 in the 2-column. This means that \(3 \cdot 2 \equiv 1 \) (mod 5), so \(2 \equiv \frac{1}{3} \) (mod 5).

Similarly, \(\frac{1}{4} \equiv 4 \) (mod 5), since \(4 \cdot 4 \equiv 1 \) (mod 5), and similarly, \(\frac{1}{1} \equiv 1 \) (mod 5), and \(\frac{1}{2} \equiv 3 \) (mod 5). Note that \(\frac{1}{0} \) does not exist mod 5, since we cannot find a mod 5 number \(x \) so that \(0 \cdot x \equiv 1 \) (mod 5).

Let’s try the same issue mod 6.

Find \(\frac{1}{5} \) (mod 6).

To solve this, we can take a look at the mod 6 multiplication table from Unit 11:

\[
\begin{array}{c|cccccc}
\times & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 & 4 & 5 \\
2 & 0 & 2 & 4 & 0 & 2 & 4 \\
3 & 0 & 3 & 0 & 3 & 0 & 3 \\
4 & 0 & 4 & 2 & 0 & 4 & 2 \\
5 & 0 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]

We find 1 in the 5-row and 5-column, which means that \(5 \cdot 5 \equiv 1 \) (mod 6), so \(5 \equiv \frac{1}{5} \) (mod 6).

How about \(\frac{1}{2} \) (mod 6)? If you look in the 2-row, there is no 1. This means there is no mod 6 number \(x \) so that \(2 \cdot x \equiv 1 \) (mod 6). This means that \(\frac{1}{2} \) does not exist mod 6. Similarly, since there is no 1 in the 0, 3, or 4 columns, \(\frac{1}{0}, \frac{1}{3}, \) and \(\frac{1}{4} \) also do not exist. As you may expect, \(\frac{1}{1} \equiv 1 \) (mod 6).

We just saw that \(\frac{1}{a} \) (mod 6) exists when \(a = 1 \) or 5, and does not exist when \(a = 0, 2, 3, \) or 4. Note that 1 and 5 are relatively prime to 6, while 0, 2, 3 and 4 are not relatively prime to 6. This suggests the following result.

Theorem 1.1. \(\frac{1}{a} \) (mod \(m \)) exists exactly when \(a \) and \(m \) are relatively prime.
Let’s see why this works in an example where \(m = 21 \). The number \(a = 16 \) is relatively prime to 21, which is another way of saying that \(\gcd(16, 21) = 1 \). Following the method of Unit 7, we can use the reverse Euclidean algorithm to write 1 as a combination of 16 and 21. Explicitly,

\[
21 = 1 \cdot 16 + 5 \\
16 = 3 \cdot 5 + 1
\]

When we reverse these steps as in Unit 7, we find:

\[
1 = 16 - 3 \cdot 5 \\
1 = 16 - 3 \cdot (21 - 16) = 4 \cdot 16 - 3 \cdot 21
\]

so

\[
1 = 4 \cdot 16 - 3 \cdot 21.
\]

Let’s interpret this identity mod 21. It says:

\[
1 \equiv 4 \cdot 16 - 3 \cdot 21 \pmod{21},
\]

so

\[
1 \equiv 4 \cdot 16 \pmod{21}.
\]

In general, if \(\gcd(a, m) = 1 \), then by using the method of Unit 7, there are integers \(x \) and \(y \) so that \(a \cdot x + m \cdot y = 1 \). Then

\[
1 \equiv a \cdot x + m \cdot y \equiv a \cdot x + m \cdot 0 \equiv a \cdot x \pmod{m}.
\]

Thus,

\[
1 \equiv a \cdot x \pmod{m} \text{ and } \frac{1}{a} \equiv x \pmod{m}.
\]

We can also see in an example why \(\frac{1}{a} \pmod{m} \) does not exist if \(\gcd(a, m) \) is not 1.

Let’s try this with \(a = 6 \) and \(m = 21 \). If \(\frac{1}{6} \equiv x \pmod{21} \), then \(6 \cdot x \equiv 1 \pmod{21} \).

But this means that 21 divides \(1 - 6 \cdot x \), so also 3 divides \(1 - 6 \cdot x \). Since 3 divides \(1 - 6 \cdot x \), \(1 - 6 \cdot x \equiv 0 \pmod{3} \), so \(1 \equiv 6 \cdot x \pmod{3} \). But this cannot happen, since 6 \(\equiv 0 \pmod{3} \) because 6 \(\equiv 0 \pmod{3} \), so we would get the absurd statement \(1 \equiv 0 \pmod{3} \). This shows that \(\frac{1}{6} \pmod{21} \) cannot exist. A similar argument implies that \(\frac{1}{a} \pmod{m} \) does not exist if \(\gcd(a, m) \) is not 1.

1.3. Computing reciprocals

If you are asked to compute \(\frac{1}{a} \pmod{m} \), you can solve the problem as follows.

STEP 1: Compute \(\gcd(a, m) \). If the answer is not 1, then \(\frac{1}{a} \pmod{m} \) does not exist by Theorem 1.1 of the last section. Say that the reciprocal does not exist, and move on to the next problem.
STEP 2: If \(\gcd(a, m) = 1 \), then use the reverse Euclidean algorithm from Unit 7 to find integers \(x \) and \(y \) so that \(a \cdot x + m \cdot y = 1 \). Then \(a \cdot x \equiv 1 \pmod{m} \), and \(x \equiv \frac{1}{a} \pmod{m} \).

In this section, we’ll work out some examples of this.

PROBLEM: Compute \(\frac{1}{5} \pmod{26} \).

To solve this, note that \(\gcd(5, 26) = 1 \), so \(\frac{1}{5} \) exists. Now do the Euclidean algorithm for 26 and 5:

\[
26 = 5 \cdot 5 + 1
\]

and use this to write 1 as a combination of 5 and 26:

\[
1 = 1 \cdot 26 - 5 \cdot 5.
\]

Interpret this as a mod 26 equality, to get:

\[
1 \equiv 1 \cdot 26 - 5 \cdot 5 \equiv -5 \cdot 5 \pmod{26},
\]

since clearly \(1 \cdot 26 \equiv 0 \pmod{26} \). So

\[
1 \equiv -5 \cdot 5 \pmod{26},
\]

and we get:

\[
\frac{1}{5} \equiv -5 \equiv 21 \pmod{26}, \quad \text{and} \quad \frac{1}{5} \equiv 21 \pmod{26}
\]

solves the problem.

PROBLEM: Compute \(\frac{1}{17} \pmod{60} \).

You can check that \(\gcd(17, 60) = 1 \). Now use the Euclidean algorithm to write 1 as a combination of 17 and 60. The steps are:

\[
60 = 3 \cdot 17 + 9
\]

\[
17 = 9 + 8
\]

\[
9 = 8 + 1, \quad \text{so} \quad 1 = 9 - 8
\]

\[
1 = 9 - (17 - 9) = 2 \cdot 9 - 17
\]

\[
1 = 2 \cdot (60 - 3 \cdot 17) - 17 = 2 \cdot 60 - 7 \cdot 17
\]

so

\[
1 = 2 \cdot 60 - 7 \cdot 17.
\]

Consider this mod 60, which gives

\[
1 \equiv -7 \cdot 17 \pmod{60}, \quad \text{so} \quad \frac{1}{17} \equiv -7 \equiv 53 \pmod{60}.
\]

So \(\frac{1}{17} \equiv 53 \pmod{60} \). You can check this with a calculator by verifying that \(17 \cdot 53 \equiv 1 \pmod{60} \), i.e., 60 divides \(17 \cdot 53 \) with remainder 1.

PROBLEM: Compute \(\frac{1}{201} \pmod{340} \) and \(\frac{1}{17} \pmod{340} \).

Since \(\gcd(17, 340) = 17 \), 17 and 340 are not relatively prime, so \(\frac{1}{17} \pmod{340} \) does not exist. The following steps show that \(\gcd(201, 340) = 1 \):

\[
340 = 201 + 139
\]
\[201 = 139 + 62\]
\[139 = 2 \cdot 62 + 15\]
\[62 = 4 \cdot 15 + 2\]
\[15 = 7 \cdot 2 + 1,\]
and then if we use the reverse Euclidean algorithm, we get:
\[1 = 15 - 7 \cdot 2 = 15 - 7 \cdot (62 - 4 \cdot 15) = 29 \cdot 15 - 7 \cdot 62\]
\[1 = 29 \cdot (139 - 2 \cdot 62) - 7 \cdot 62 = 29 \cdot 139 - 65 \cdot 62\]
\[1 = 29 \cdot 139 - 65 \cdot (201 - 139) = 94 \cdot 139 - 65 \cdot 201\]
\[1 = 94 \cdot (340 - 201) - 65 \cdot 201 = 94 \cdot 340 - 159 \cdot 201,\]
so
\[1 = 94 \cdot 340 - 159 \cdot 201.\]
We consider this mod 340, and get:
\[1 \equiv -159 \cdot 201 \pmod{340},\]
so
\[\frac{1}{201} \equiv -159 \equiv 181 \pmod{340}.\]
So \(\frac{1}{201} \equiv 181 \pmod{340}\) is our final answer. This problem takes quite a bit of work, but if you are systematic and careful, this problem is not difficult.

1.4. Division. We are now ready to discuss \(\frac{a}{b} \pmod{m}\).

CASE 1: If \(\gcd(b, m)\) does not equal 1, then \(\frac{a}{b} \pmod{m}\) does not exist.

CASE 2: If \(\gcd(b, m) = 1\), then \(\frac{a}{b} = a \cdot \frac{1}{b} \pmod{m}\).

In CASE 2, we can compute \(\frac{1}{b} \pmod{m}\) following the method of the previous section, and multiply that number by \(a\) to get \(\frac{a}{b} \pmod{m}\).

EXAMPLE: Compute \(\frac{3}{4} \pmod{9}\)

To compute this, first check that \(\gcd(4, 9) = 1\), so \(\frac{3}{4} \pmod{9}\) exists. Now calculate \(\frac{1}{4} \pmod{9}\). To do this, use the Euclidean algorithm to find:
\[9 = 2 \cdot 4 + 1,\]
which implies that:
\[1 = 9 - 2 \cdot 4,\]
so
\[1 \equiv -2 \pmod{9},\]
and
\[\frac{1}{4} \equiv -2 \pmod{9}.\]
Since \(-2 \equiv 7 \pmod{9}\), \(\frac{1}{4} \equiv 7 \pmod{9}\).

So \(\frac{3}{4} \equiv 3 \cdot \frac{1}{4} \equiv 3 \cdot 7 \equiv 21 \equiv 3 \pmod{9}\), so \(\frac{3}{4} \equiv 3 \pmod{9}\).

EXAMPLE: Compute \(\frac{5}{6} \pmod{21}\).

We compute \(\gcd(6, 21) = 3\), so 6 and 21 are not relatively prime. This means that \(\frac{5}{6} \pmod{21}\) does not exist.
EXAMPLE: Compute \(\frac{3}{17} \pmod{60} \).

Since \(\gcd(17, 60) = 1 \), the fraction \(\frac{3}{17} \pmod{60} \) exists. In the last section, we compute \(\frac{1}{17} \equiv 53 \pmod{60} \), so
\[
\frac{3}{17} \equiv 3 \cdot \frac{1}{17} \equiv 3 \cdot 53 \equiv 159 \equiv 39 \pmod{60}, \quad \text{so} \quad \frac{3}{17} \equiv 39 \pmod{60}.
\]

CHECKING CALCULATIONS: If \(\frac{a}{b} \equiv c \pmod{m} \), then \(\gcd(b, m) = 1 \), and by multiplying each side by \(b \), we get:
\[
\frac{a}{b} \cdot b \equiv b \cdot c \pmod{m}.
\]
But
\[
\frac{a}{b} \cdot b \equiv a \cdot \frac{1}{b} \cdot b \equiv a \cdot \frac{b}{b} \equiv a \cdot 1 \equiv a \pmod{m}.
\]
We conclude: \(\frac{a}{b} \equiv c \pmod{m} \) implies that \(a \equiv b \cdot c \pmod{m} \).

We can use this last observation to check our calculations. For example, to check that our computation \(\frac{3}{17} \equiv 39 \pmod{60} \) from the last example is correct, we can check that \(3 \equiv 17 \cdot 39 \pmod{60} \). If you check on your calculator, you will find that \(17 \cdot 39 \equiv 663 \equiv 3 \pmod{60} \), which verifies that our calculation is correct.

WEIRDNESS WITH MODULAR ARITHMETIC FRACTIONS: There are some strange things that happen with fractions in modular arithmetic.

PROBLEM: Compute \(\frac{1}{3} \pmod{10} \). Compute \(\frac{2}{6} \pmod{10} \).

To solve the first problem, since \(\gcd(3, 10) = 1 \), \(\frac{1}{3} \pmod{10} \) exists. Using the reverse Euclidean algorithm, we get \(1 \equiv 10 - 3 \cdot 3 \pmod{10} \), so
\[
1 \equiv -3 \cdot 3 \pmod{10} \quad \text{and} \quad \frac{1}{3} \equiv -3 \equiv 7 \pmod{10}, \quad \text{so} \quad \frac{1}{3} \equiv 7 \pmod{10}.
\]

On the other hand, \(\frac{2}{6} \pmod{10} \) does not exist since \(\gcd(6, 10) = 2 \) is not 1. So we have the counterintuitive situation that \(\frac{1}{3} \) exists, but \(\frac{2}{6} \) does not exist in mod 10 arithmetic. Especially, \(\frac{1}{3} \) does not equal \(\frac{2}{6} \) in mod 10 arithmetic.

To explain this, we can refer to the motivation at the beginning of Section 1.1. We said that \(x \equiv \frac{a}{b} \pmod{m} \) should mean that \(b \cdot x \equiv a \pmod{m} \). The idea is that if \(b \cdot x \equiv a \pmod{m} \), then if we divide each side by \(b \), we should get:
\[
x \equiv \frac{a}{b} \pmod{m}.
\]

Let’s try this with \(b = 6 \), \(a = 2 \), and \(m = 10 \). Then you can easily check that:
\[
6 \cdot 2 \equiv 2 \pmod{10}.
\]
If we could divide each side by 6, we would get:
\[
2 \equiv \frac{2}{6} \pmod{10}.
\]
On the other hand, we can also check that:
6 \cdot 7 \equiv 2 \pmod{10}. If we divide each side by 6, we would get:
7 \equiv \frac{2}{6} \pmod{10}.

So putting these two cases together, we find:
2 \equiv \frac{2}{6} \equiv 7 \pmod{10}, so
2 \equiv 7 \pmod{10}, and this is clearly wrong, since 10 does not divide 2 \cdot 7.
The main issue is that dividing by 6 in mod 10 arithmetic, would be the same thing
as multiplying by \frac{1}{6} \pmod{10}, and we saw earlier that \frac{1}{6} \pmod{10} does not exist
in Theorem 1.1 since 6 and 10 are not relatively prime. In other words, \frac{1}{6} \pmod{10}
does not exist because there is no number x such that 6 \cdot x \equiv 1 \pmod{10}. Indeed,
6 \cdot x - 1 must be an odd number, so it cannot be a multiple of 10. Another way of
thinking about this is to say that we can’t divide by 6 mod 10 for the same reason
that we can’t divide by 0 in usual arithmetic.

We can summarize this discussion:
(1) If gcd(b, m) = 1, then \frac{a}{b} \pmod{m} exists. Further, \frac{a}{b} \equiv a \pmod{m}, i.e., x \equiv \frac{a}{b} \pmod{m}
is the only solution to b \cdot x \equiv a \pmod{m}.

EXAMPLE: \frac{2}{3} \equiv 10 \pmod{14}.

To see this, note first that gcd(3, 14) = 1, and then note that \frac{1}{3} \equiv 5 \pmod{14}, so
\frac{2}{3} \equiv 2 \cdot \frac{1}{3} \equiv 2 \cdot 5 \equiv 10 \pmod{14}.

Further, x \equiv \frac{2}{3} \equiv 10 \pmod{14} is a solution to 3 \cdot x \equiv 2 \pmod{14} since 3 \cdot 10 \equiv 2
(\pmod{14}). On the other hand, if 3 \cdot x \equiv 2 \pmod{14}, we can multiply each side by
\frac{1}{3} \equiv 5 to obtain:
5 \cdot 3 \cdot x \equiv 5 \cdot 2 \equiv 10 \pmod{14}.
Since 5 \cdot 3 \equiv 1 \pmod{14}, this means that
x \equiv 1 \cdot x \equiv 5 \cdot 3 \cdot x \equiv 10 \pmod{14},
so if x is a solution to 3 \cdot x \equiv 2 \pmod{14}, then x \equiv 2 \pmod{14}.

(2) If gcd(b, m) is not 1, then \frac{a}{b} \pmod{m} does not exist. Either
(A) there is no solution to b \cdot x \equiv a \pmod{m} or
(B) There is more than one solution to b \cdot x \equiv a \pmod{m}.

For example, if we let m = 14 and b = 4 so gcd(4, 14) = 2, then there is no solution to:
4 \cdot x \equiv 3 \pmod{14}. If there were a solution, then 4 \cdot x - 3 \equiv 0 \pmod{14}, so 14 divides
4 \cdot x - 3. But 4 \cdot x - 3 is odd because 4 \cdot x is even and 3 is odd, so 14 cannot divide
an odd number.

For an example of (B), consider the equation
4 \cdot x \equiv 6 \pmod{14}. The reader can check easily that \(x \equiv 5 \pmod{14} \) and \(x \equiv 12 \pmod{14} \) are both solutions, since \(4 \cdot 5 \equiv 20 \equiv 6 \pmod{14} \) and \(4 \cdot 12 \equiv 6 \pmod{14} \). This means that \(\frac{6}{4} \pmod{14} \) does not exist, because it would have two values.

EXERCISES:

1. Compute the following reciprocals in modular arithmetic, or explain why the reciprocal does not exist:
 (a) \(\frac{1}{11} \pmod{14} \)
 (b) \(\frac{1}{8} \pmod{14} \)
 (c) \(\frac{1}{3} \pmod{7} \)
 (d) \(\frac{1}{6} \pmod{7} \)
 (e) \(\frac{1}{7} \pmod{7} \)

2. Compute the following reciprocals in modular arithmetic, or explain why the reciprocal does not exist:
 (a) \(\frac{1}{13} \pmod{43} \)
 (b) \(\frac{1}{42} \pmod{43} \)
 (c) \(\frac{1}{-1} \pmod{43} \)
 (d) \(\frac{1}{17} \pmod{42} \)
 (e) \(\frac{1}{35} \pmod{42} \)

3. Compute the following reciprocals in modular arithmetic:
 (a) \(\frac{1}{123} \pmod{503} \)
 (b) \(\frac{1}{423} \pmod{2311} \)

4. Compute the following fractions in modular arithmetic, or explain why they do not exist:
 (a) \(\frac{5}{8} \pmod{13} \)
 (b) \(\frac{5}{13} \pmod{43} \)
 (c) \(\frac{5}{24} \pmod{42} \)
 (d) \(\frac{7}{8} \pmod{102013452} \)
 (e) \(\frac{7}{423} \pmod{2311} \)
(5) Find all mod 22 numbers \(x \) so that \(3 \cdot x \equiv 4 \pmod{22} \). Find all mod 22 numbers \(x \) so that \(6 \cdot x \equiv 8 \pmod{22} \). Does the fraction \(\frac{4}{3} \pmod{22} \) exist?

Does the fraction \(\frac{8}{6} \pmod{22} \) exist?

(6) Find a mod 60 number \(x \) so that \(31 \cdot x \equiv 5 \pmod{60} \).

(7) A security guard drives past an ATM at exactly 5 minutes after the start of each hour (i.e., at 1:05, 2:05, 3:05 and so on). A robber wearing a mask comes to the ATM every 31 minutes starting at 1:31. When does the security guard first arrive at the ATM at the same time as the robber? (hint: use the last problem. Also, the security guard and robber never have to sleep).