
MATH 13150: Freshman Seminar

Unit 14

1. Powers in mod p arithmetic

In this Unit, we will study powers a
n (mod p). It will turn out that these are much

easier to compute then one would imagine.
Let’s recall a fable which illustrates how quickly powers can grow.
A merchant in a kingdom long ago did something to benefit the Emperor of the
kingdom. The Emperor asked the merchant what he could do to thank the merchant.
The merchant asked him to give him a chessboard with one grain of rice on the first
square, two grains of rice on the second square, four grains of rice on the third square,
eight grains of rice on the fourth square, and so on, so on each successive square, the
merchant receives double the amount of rice (a chessboard has 64 squares). The
Emperor thinks this is a very small amount, and indeed on the 8th square, the
merchant receives only 27 = 128 grains of rice, which is about a tablespoon worth.
However, by the end of the second row, the merchant received 215 grains of rice, which
is about a gallon, and by the end of the 6th row, the amount of rice was 247 grains,
which was more rice than could be found in the kingdom. The emperor realized the
merchant had played a trick on him, and had him beheaded, and kept the rice.
This fable has two morals:
(1) If you’re going to make fun of someone with power over you, make sure they have
a sense of humor.
(2) Powers of 2 get to be really big.
The second moral is important for us.
For example, 260 has 19 digits (or is about one billion billion). 2100 has 30 digits or
so, which is too big to have a name.

1.1. Calculating powers. Although 260 is a large number, a marvelous fact about
modular arithmetic is that we can frequently compute 260 (mod m) quite easily.
Let’s look at some examples.

EXAMPLE: Compute 260 (mod 31).

To do this, notice that 25
≡ 32 ≡ 1 (mod 31). One of the basic properties of expo-

nents is that

(am)n = a
mn for any numbers a,m, n.

This remains true in modular arithmetic. In particular, (25)12
≡ 260 (mod 31). From

this we conclude that
260

≡ (25)12
≡ 112

≡ 1 (mod 31), where we used the observation 25
≡ 1 (mod 31) in

the second equivalence.

EXAMPLE: Compute 2423 (mod 31).

To do this, we can divide 5 into 423, and see that it goes in 84 times with remainder
3, or in other words, 423 = 5 · 84 + 3. From this, we obtain:

2423 = 25·84+3
≡ 25·84

· 23
≡ (25)84

· 23
≡ 184

· 23
≡ 1 · 8 ≡ 8 (mod 31).
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In conclusion, 2423
≡ 8 (mod 31).

To do this, we only needed to know that 25
≡ 1 (mod 31), and use powers of expo-

nents:
a

b·c
≡ (ab)c (mod m), a

b+c
≡ a

b
· a

c (mod m).
In this Unit, we’ll learn a systematic way of finding identities like 25

≡ 1 (mod 31).

Before we get seriously into that issue, let’s think for a moment about computing
powers in modular arithmetic. The problem with computing powers is that they get
to be really big. The nice feature about modular arithmetic is that it gives us a way
to rewrite big numbers as small ones. For example, when we say 519 ≡ 9 (mod 17),
we’re replacing the big number 519 by the small number 9. Let’s think about how
we can organize calculatiions to make them feasible.

EXAMPLE: Compute 521 (mod 31).

521 has 15 digits, and can’t be easily expressed in usual arithmetic. For modular
arithmetic, we can do better.
Note that 52

≡ 25 (mod 31). Further, 25 ≡ −6 (mod 31), so 52
≡ −6 (mod 31).

Now 54
≡ (52)2

≡ (−6)2
≡ 36 ≡ 5 (mod 31), so

54
≡ 5 (mod 31). Similarly,

58
≡ (54)2

≡ 52
≡ 25 ≡ −6 (mod 31), so 58

≡ −6 (mod 31). Similarly,
516

≡ (−6)2
≡ 36 ≡ 5 (mod 31), so 516

≡ 5 (mod 31).
We could try computing 532, but 32 is already bigger than 21. Instead, we can express
21 in terms of 16 and smaller numbers:
21 = 16 + 4 + 1.
The trick to doing this is to note that 21 − 16 = 5, so 21 = 16 + 5. The smallest
power of 2 less than 5 is 4, and 5 − 4 = 1, or 5 = 4 + 1. 1 is already a power of 2
since 1 = 20. Putting this together, gives
21 = 16 + 5 = 16 + (4 + 1) = 16 + 4 + 1.
521

≡ 516+4+1
≡ 516

· 54
· 51

≡ 5 · 5 · 5 ≡ 52
· 5 ≡ −6 · 5 ≡ −30 ≡ 1 (mod 31). In other

words,
521

≡ 1 (mod 31).
We can do that with any number, and once you get used to doing this, it is routine
and fast.

PROBLEM: Compute 714 (mod 31).
First, compute powers of 7 in mod 31 arithmetic. For some of these steps, using a
calculator is a good idea
72

≡ 49 ≡ 18 ≡ −13 (mod 31).
74

≡ (72)2
≡ (−13)2

≡ (13)2
≡ 169 ≡ 14 (mod 31).

78
≡ (74)2

≡ (14)2
≡ 196 ≡ 10 (mod 31). We won’t compute 716 since 16 is larger

than the power 14. Instead, we’ll express 14 in terms of the powers we computed:
14 − 8 = 6, so 14 = 8 + 6.
6 − 4 = 2, so 6 = 4 + 2, and
14 = 8 + 4 + 2. This means:
714

≡ 78+6+2
≡ 78

· 74
· 72

≡ 10 · 14 · −13 ≡ −1820 ≡ −22 ≡ 9 (mod 31),
so 714

≡ 9 (mod 31). This solves the problem.
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You won’t have to do problems much bigger than this past problem. We can sum-
marize what we’ve done as follows:

TECHNIQUE FOR COMPUTING a
n (mod m):

STEP 1: Compute a
2 (mod m), a

4 (mod m), a
8 (mod m), a

16 (mod m), etc., where
we stop computing when the power in the exponent is larger than n.
STEP 2: Express n as a sum of powers of 2.
STEP 3: Compute a

n (mod m) using the law of exponents to express a
n as a product

of powers of a we have already computed mod m.
These steps summarize what we did in the examples.

1.2. Tables of powers. We want to understand how to compute a
n (mod m) even

when n is very large. For this, it is useful to know that a certain power is 1.
We can compute powers mod 7 fairly easily. For example:

21
≡ 2 (mod 7)

22
≡ 4 (mod 7)

23
≡ 1 (mod 7)

24
≡ 2 (mod 7)

25
≡ 4 (mod 7)

26
≡ 1 (mod 7)

27
≡ 2 (mod 7),

. . .

You can probably guess that the 2, 4, 1 pattern will repeat over and over, so 28
≡ 4

(mod 7), 29
≡ 1 (mod 7).

By doing these calculations, we can compute a table of powers mod 7. In this table,
the entry in the n = 2 column of the 5n row is 4 because 52

≡ 4 (mod 7). All entries
in the 1n row are 1 because 1n = 1 for any number n.

MOD 7 TABLES OF POWERS

n 1 2 3 4 5 6 7 8 9 10 11 12

1n 1 1 1 1 1 1 1 1 1 1 1 1
2n 2 4 1 2 4 1 2 4 1 2 4 1
3n 3 2 6 4 5 1 3 2 6 4 5 1
4n 4 2 1 4 2 1 4 2 1 4 2 1
5n 5 4 6 2 3 1 5 4 6 2 3 1
6n 6 1 6 1 6 1 6 1 6 1 6 1

While this table is a little tedious to work out, it’s not so bad. Once we find a 1
in a row, then the pattern repeats. Indeed, once we know 36

≡ 1 (mod 7), then
37

≡ 36
·31

≡ 1 ·31 (mod 7), and 38
≡ 36

·32
≡ 1 ·32 (mod 7), and so forth, so 39

≡ 33

(mod 7), 310
≡ 34 (mod 7) and so on. In other words, in any row, we only need to
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go far enough to find a 1, and then we know that the pattern repeats for the rest of
the row.
The really important observation is that in the 6-column, all entries are 1. This means
that

a
6
≡ 1 (mod 7) unless a ≡ 0 (mod 7).

Let’s also look at powers mod 5:

TABLE OF POWERS MOD 5

n 1 2 3 4 5 6 7 8 9 10 11 12

1n 1 1 1 1 1 1 1 1 1 1 1 1
2n 2 4 3 1 2 4 3 1 2 4 3 1
3n 3 4 2 1 3 4 2 1 3 4 2 1
4n 4 1 4 1 4 1 4 1 4 1 4 1

Note that once a 1 appears in any row, the remaining elements in the row are given
by repeating the pattern up to the 1. Also notice that all entries in the 4 column are
1, or in other words, :

a
4
≡ 1 (mod 5) unless a ≡ 0 (mod 5).

1.3. Fermat’s Theorem. Notice that 5 and 7 are primes, and:

a
4
≡ 1 (mod 5) unless a ≡ 0 (mod 5) and:

a
6
≡ 1 (mod 7) unless a ≡ 0 (mod 7).

You may have noticed that 5 and 7 are prime, and 4 = 5 − 1 and 6 = 7 − 1. This
suggests the following result:

Theorem 1.1. (FERMAT) a
p−1

≡ 1 (mod p) if p is prime, unless a ≡ 0 (mod p).

Let’s try this out when p = 11. This predicts that:

110
≡ 1 (mod 11)

210
≡ 1 (mod 11)

310
≡ 1 (mod 11)

410
≡ 1 (mod 11)

510
≡ 1 (mod 11)

610
≡ 1 (mod 11)

710
≡ 1 (mod 11)

810
≡ 1 (mod 11)

910
≡ 1 (mod 11)

1010
≡ 1 (mod 11)

Let’s try to verify that 310
≡ 1 (mod 11), which we can do using the following steps:

32
≡ 9 ≡ −2 (mod 11)

34
≡ (32)2

≡ (−2)2
≡ 4 (mod 11)

38
≡ (34)2

≡ 42
≡ 5 (mod 11)

310
≡ 38

· 32
≡ 5 · −2 ≡ −10 ≡ 1 (mod 11)!!!

From this, we can use the fact that 8 ≡ −3 (mod 11) to deduce that 810
≡ (−3)10

≡

(−1)10
· 310

≡ 1 · 1 ≡ 1 (mod 11).
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Similarly, since 9 ≡ 32 (mod 11), 910
≡ (32)10

≡ 320
≡ (310)2

≡ 12
≡ 1 (mod 11).

Since also 2 ≡ −9 (mod 11), 210
≡ (−9)10

≡ (−1)10
· 910

≡ 1 · 1 ≡ 1 (mod 11).
Continuing in this vein, we can verify that each of the above powers is really 1
(mod 11).
I’m willing to bet that you believed me once I wrote down the theorem, so while this
kind of exercise has a certain charm, it’s not essential.
The following problems illustrate Fermat’s theorem.

PROBLEM: Compute 1330 (mod 31).

This is really easy to do using Fermat’s theorem. Since 31 is prime and 31 does not
divide 13, Fermat’s theorem asserts that
1330

≡ 1 (mod 31).
No work required!!!

PROBLEM: Compute the following powers in modular arithmetic:
1742 (mod 43)
12158 (mod 59)
142210 (mod 211)
216 (mod 7)

The first three are straightforward:
43 is prime and doesn’t divide 17 evenly, so 1742

≡ 1 (mod 43)
59 is prime and doesn’t divide 121 evenly, so 12159

≡ 1 (mod 59)
211 is prime and doesn’t divide 142 evenly, so 142210

≡ 1 (mod 211).
The last one has a bit of a twist:
Since 7 divides 21 evenly, 21 ≡ 0 (mod 7), so 216

≡ 06
≡ 0 (mod 7).

In conclusion, the answer to the first three problems is 1 and the answer to the last
problem is 0.
Fermat’s theorem has some powerful consequences. Let’s look at a few of them before
moving on.

PROBLEM: Compute 3481 (mod 19).

To solve this, note that by Fermat’s theorem, 318
≡ 1 (mod 19). To compute 3481, we

divide 18 into 481 using a calculator. Since 18 divides 481 26 times with remainder
13, this means that
481 = 26 · 18 + 13. From this, we can deduce that:
3481

≡ 318·26+13
≡ (318)26

· 313 (mod 19).
Since 318

≡ 1 (mod 19), we can write this last expression as:
3481

≡ 126
· 313

≡ 313 (mod 19). Now we compute 313 (mod 19) using the method of
Section 1.1. We get:
32

≡ 9 (mod 19)
34

≡ (32)2
≡ 92

≡ 81 ≡ 5 (mod 19)
38

≡ (34)2
≡ 52

≡ 25 ≡ 6 (mod 19).
Since 13 = 8 + 4 + 1, 313

≡ 38
· 34

· 31
≡ 6 · 5 · 3 ≡ 14 (mod 19). In conclusion,

3481
≡ 313

≡ 14 (mod 19).

PROBLEM: Compute 7465 (mod 23).
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Using Fermat’s theorem, 722
≡ 1 (mod 23). Now divide 22 into 465 to get 465 =

22 · 21 + 3. This tells us that
7465

≡ (722)21
· 73

≡ 121
· 73

≡ 73 (mod 23).
Since 72

≡ 49 ≡ 3 (mod 23), 73
≡ 72

· 7 ≡ 3 · 7 ≡ 21 (mod 23), so:
7465

≡ 21 (mod 23).

REMARK: If a
p−1

≡ 1 (mod p), and p − 1 divides n with remainder r, then a
n
≡ a

r

(mod p).

For example, the remark says that since 22 divides 465 with remainder 3, 7465
≡ 73

(mod 23).

PROBLEM: Compute 3974 (mod 11).

By Fermat’s theorem, 310
≡ 1 (mod 11). It is easy to see that 10 divides 974 with

remainder 4, so if we use the last remark, we see that:
3974

≡ 34
≡ 81 ≡ 4 (mod 11).

PROBLEM: Compute 5579 (mod 29).

To solve this, use Fermat’s theorem to conclude that 528
≡ 1 (mod 29). Now check

that 28 divides 579 with remainder 19, so using the above remark,
5579

≡ 519 (mod 29).
To compute 519 (mod 29), use the following steps:
52

≡ 25 ≡ −4 (mod 29).
54

≡ (52)2
≡ (−4)2

≡ 16 (mod 29).
58

≡ (54)2
≡ (16)2

≡ 256 ≡ 24 ≡ −5 (mod 29).
516

≡ (58)2
≡ (−5)2

≡ 25 ≡ −4 (mod 29).
Since 19 = 16 + 2 + 1,
519

≡ 516
· 52

≡ 51
≡ −4 · −4 · 5 ≡ 22 (mod 29), so

5579
≡ 22 (mod 29).

1.4. Justification of Fermat’s theorem. Let’s see how we can justify Fermat’s
theorem in an example. We’ll show that 56

≡ 1 (mod 7) without actually computing
any powers. The same argument works in general.
First, let’s consider the number c ≡ 6! ≡ 1 · 2 · 3 · 4 · 5 · 6 (mod 7). Let’s compute the
5-row of the multiplication table mod 7:
5 · 1 ≡ 5 (mod 7)
5 · 2 ≡ 3 (mod 7)
5 · 3 ≡ 1 (mod 7)
5 · 5 ≡ 4 (mod 7)
5 · 6 ≡ 2 (mod 7).
It follows that:
(EQUATION *) 5 · 1 · 5 · 2 · 5 · 3 · 5 · 4 · 5 · 5 · 5 · 6 ≡ 5 · 3 · 1 · 6 · 4 · 2 (mod 7).
The left-hand side of this last equality can be written as:
5 · 5 · 5 · 5 · 5 · 5 · 1 · 2 · 3 · 4 · 5 · 6 ≡ 56

· 6!.
The right-hand side of EQUATION (*) can be written as 5 ·3 ·1 ·6 ·4 ·2 ≡ 6! (mod 7).
If we plug these two equalities back into EQUATION (*), we get:
56

· 6! ≡ 6! (mod 7).
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But gcd(6!, 7) = 1, so we can divide by 6! in mod 7 arithmetic, so we find:

56
·

6!

6!
≡

6!

6!
(mod 7).

Since
6!

6!
≡ 1 (mod 7), this gives us:

56
≡ 1 (mod 7). That’s the end of the argument.

To show that a
p−1

≡ 1 (mod p) when p does not divide a, we need to know that the
a-row of multiplication mod p contains every element exactly once. In other words,
a · 1, a · 2, a · 3, . . . , a · p − 1 is the same collection of mod p numbers as 1, 2, 3, . . . ,
p-1. This tells us that
a · 1 · a · 2 · a · 3 · · · · · a · p − 1 ≡ 1 · 2 · 3 · · · · · p − 1,
because the factors on each side of the ≡ sign are the same, but in different orders.
We rewrite the lefthand side as: a

p−1
· (p − 1)! and rewrite the righthand side as

(p − 1)!. This tells us that:
a

p−1
· (p − 1)! ≡ (p − 1)! (mod p), so dividing each side by (p − 1)!, we get a

p−1
≡ 1

(mod p), just as Fermat’s theorem asserts.

EXERCISES:

(1) Compute 713 (mod 23) and 719 (mod 23).
(2) Compute 119 (mod 19) and 1114 (mod 19).
(3) Compute 22 (mod 13), 23 (mod 13), 24 (mod 13), . . . , 211 (mod 13), 212 (mod 13).
(4) Compute the following powers in modular arithmetic using Fermat’s theorem:

(a) 572 (mod 73)
(b) 1178 (mod 79)
(c) 1730 (mod 31)
(d) 11336 (mod 37)
(e) 159 (mod 3)
(f) 4622 (mod 23)

(5) Compute 5437 (mod 3)
(6) Compute 7190 (mod 17)
(7) Compute 8253 (mod 11)
(8) Compute 27480 (mod 13)
(9) In this problem, you are asked to follow the steps explained in the last section

of this Unit to explain why 310
≡ 1 (mod 11).

(a) Show that 3·1 (mod 11), 3·2 (mod 11), 3·3 (mod 11), . . . , 3·10 (mod 11)
are the same as 1 (mod 11), 2 (mod 11), 3 (mod 11), . . . , 10 (mod 11),
but in a scrambled order.

(b) Show that 3 · 1 · 3 · 2 · 3 · 3 · · · 3 · 10 ≡ 1 · 2 · 3 · · · 10 (mod 11) using Part
(a).

(c) Use Part (b) to show that 310
· 10! ≡ 10! (mod 11).

(d) Use Part (c) to explain the proof that 310
≡ 1 (mod 11).


