
MATH 13150: Freshman Seminar

Unit 16

1. kth roots in mod p arithmetic

In this chapter, we’ll learn how to compute kth roots in mod p arithmetic, when p is
prime.
The first subtlety is that kth roots don’t always exist, or when they exist, there may
be more than one. The key point is that when k and p-1 are relatively prime, there
is exactly one kth root mod p, and further, there is a systematic way to compute the
kth root.

1.1. Some examples. To begin, let’s recall how we think about the kth root of a
number a in ordinary arithmetic. The case you may be most familiar with are square
roots.
In ordinary arithmetic, we say a =

√
b if a is a positive number, and a2 = b. This

means that
(
√

a)2 = a if a ≥ 0 and√
a2 = a if a ≥ 0.

For example,
√

16 = 4 because 42 = 16, and certainly (
√

16)2 = 16.
We can say a is a kth root of b if ak = b. When this happens, we use the notation
k
√

b = a to indicate that a is a kth root of b.
It is easy to believe that (

k
√

b)k = b and
k
√

bk = b, but one needs to be careful. For the

first statement, we need to be sure that
k
√

b exists for this to make sense. For example,
4
√
−16 does not exist because a4 is never negative. For the second statement, we have

to require that b is positive, since otherwise, we may have 4

√

(−2)4 =
4
√

16 = 2, so
4

√

(−2)4 =
4
√

24 = 2. But anyway, for us, the thing to remember is that:
k
√

b = a when ak = b, except that sometimes
k
√

b does not exist, and sometimes when
it exists, there is more than one answer.
For example, 2 and −2 could both be taken to be

4
√

16, since 24 = (−2)4 = 16.
In modular arithmetic, we’d like to do the same thing. We set:

NOTION OF KTH ROOT MOD m : A mod m number a is called a kth root of b

(mod m) if ak ≡ b (mod m). We write a ≡ k
√

b (mod m) when this happens.

As in usual arithmetic, we write
√

b (mod m) in place of
2
√

b (mod m).
For example, 83 ≡ 2 (mod 15), so 8 is a 3rd root of 2 in mod 10 arithemtic, and we

write 8 ≡ 3
√

2 (mod 15).
It’s useful to look at a table of powers:

1



2

Mod 7 table of powers

n 1 2 3 4 5 6 7 8 9 10 11 12
1n 1 1 1 1 1 1 1 1 1 1 1 1
2n 2 4 1 2 4 1 2 4 1 2 4 1
3n 3 2 6 4 5 1 3 2 6 4 5 1
4n 4 2 1 4 2 1 4 2 1 4 2 1
5n 5 4 6 2 3 1 5 4 6 2 3 1
6n 6 1 6 1 6 1 6 1 6 1 6 1

We can use the table to compute
4
√

2 (mod 7). For this, we look in the 4-column for
2, and we find it in the 2-row and in the 5-row. This means that 24 ≡ 2 (mod 7) and
54 ≡ 2 (mod 7), so we can say:
4
√

2 ≡ 2 (mod 7) and
4
√

2 ≡ 5 (mod 7). This means
4
√

2 (mod 7) is multiply defined,
or there are two 4th roots of 2 mod 7.

PROBLEM: Compute
4
√

3 (mod 7).

To solve this, we look in the 4-column of the table for 3, and we don’t find it. In
fact, the only entries in the 4-column are 1, 2 and 4. This means that

4
√

3 (mod 7)
does not exist, since 3 is not a4 (mod 7). This is like saying that

√
−9 does not

exist in ordinary arithmetic (because a negative number like −9 is not the square of
a number).

PROBLEM: Compute
5
√

2 (mod 7).

To solve this, we look in the 5-column of the table for 2 and find it in the 4-row. This

means that 45 ≡ 2 (mod 7), so
5
√

2 ≡ 5
√

45 ≡ 4 (mod 7), which answers our question.

If we look at the table some more, we see that we can always compute
5
√

b (mod 7)
for any b:
15 ≡ 1 (mod 7), so

5
√

1 ≡ 1 (mod 7):

25 ≡ 4 (mod 7), so
5
√

4 ≡ 2 (mod 7)

35 ≡ 5 (mod 7), so
5
√

5 ≡ 3 (mod 7)

45 ≡ 2 (mod 7), so
5
√

2 ≡ 4 (mod 7)

55 ≡ 3 (mod 7), so
5
√

3 ≡ 5 (mod 7)

65 ≡ 6 (mod 7), so
5
√

6 ≡ 6 (mod 7)
So we see that mod 7, there may be one 4th root of a number, and some 4th roots do
not exist, while every mod 7 number has exactly one 5th root. This is reflected in the
fact that the 4-column has repeated entries and not every mod 7 number appears,
while in the 5-column, every mod 7 number appears exactly once.
Let’s look at another table of powers.
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Mod 11 table of powers

n 1 2 3 4 5 6 7 8 9 10
1n 1 1 1 1 1 1 1 1 1 1
2n 2 4 8 5 10 9 7 3 6 1
3n 3 9 5 4 1 3 9 5 4 1
4n 4 5 9 3 1 4 5 9 3 1
5n 5 3 4 9 1 5 3 4 9 1
6n 6 3 7 9 10 5 8 4 2 1
7n 7 5 2 3 10 4 6 9 8 1
8n 8 9 6 4 10 3 2 5 7 1
9n 9 4 3 5 1 9 4 3 5 1
10n 10 1 10 1 10 1 10 1 10 1

PROBLEM: How many
4
√

3 (mod 11) are there? What are they?

SOLUTION: When we look at the 4-column of the table, we see that 44 ≡ 74 ≡ 3
(mod 11), so 4 and 7 are both 4th roots of 3 in mod 11 arithmetic. This solves the
problem.
On the other hand,

4
√

2 (mod 11) does not exist, since 2 does not occur in the 4-
column.
PROBLEM: For which k from 1 to 10, does every mod 11 number have a kth root
mod 11?

SOLUTION: We look for columns in the mod 11 table of powers so that every mod
11 number occurs. They are k = 1, 3, 7, 9. This answers the question.

1.2. When is there exactly one
k
√

b (mod p)? We learned in the last section how

to find
k
√

b (mod p) if we have a table in front of us. In this section, we’ll learn a

general result telling us when there is exactly one
k
√

b (mod p).

Theorem 1.1. If gcd(k, p − 1) = 1, there is exactly one
k
√

b (mod p), while if

gcd(k, p− 1) is not 1, then either there is more than one
k
√

b (mod p), or there is no

kth root of b mod p. Further, if gcd(k, p − 1) = 1, then
k
√

ak ≡ a (mod p).

In the next section, we’ll learn a way to compute
k
√

b (mod p) when gcd(k, p−1) = 1,
and this will enable us to explain the theorem. For now, we’ll just familiarize ourselves

with what the theorem asserts. We’ll mainly be interested in computing
k
√

b (mod p)
when gcd(k, p − 1) = 1.

EXAMPLE: If p = 7, then p − 1 = 6. The theorem says that if gcd(k, 6) = 1, then
there is exactly one kth root of each mod 7 number. Certainly gcd(1, 6) = 1, and
every number has exactly one 1st root, and gcd(5, 6) = 1, and every number has
exactly one 5th root, as we saw above. On the other hand, gcd(2, 6) = 2, so there
is no guarantee that every number has exactly one square root. In fact, if we look
at the 2-column of mod 7 powers, we see that 1, 2 and 4 have 2 square roots, but
3, 5 and 6 do not have square roots. Further, gcd(3, 6) = 3, and 1 and 6 each have
three 3rd roots, while 2, 3, 4, 5 do not have 3rd roots, since they do not appear in the
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3-column. The pattern repeats every 6 numbers, so if k = 7 or 11, there is only one
kth root mod 7.

EXAMPLE: If p = 11, then p − 1 = 10, so Theorem 1.1 asserts that there is exactly
one kth root of b mod 11 when gcd(k, 10) = 1. The numbers from 1 to 10 so that
gcd(k, 10) = 1 are k = 1, 3, 7, 9. This agrees with the answer we found in the Problem
at the end of the previous section, so the theorem agrees with what we found from
the table.

PROBLEM: Is there exactly one
3
√

7 (mod 23)? Is there exactly one
14
√

5 (mod 23)?

To solve this, take p = 23, so p−1 = 22. We compute gcd(3, 22) = 1 and gcd(14, 22) =

2. This means that there is exactly one
3
√

7 (mod 23), but there is not exactly one
14
√

5 (mod 23). There may be no
14
√

5 (mod 23), or there may be more than one.
From our point of view, we just think of this as a bad situation where we won’t be
able to compute the answer easily. Note that the answer has nothing to do with the

7 or 5, but only has to do with the k in
k
√

b (mod 23).

PROBLEM: For which numbers k is there exactly one
k
√

2 (mod 23)?

The theorem says that
k
√

2 (mod 23) is guaranteed to exist only for k such that
gcd(k, 22) = 1. The numbers k with this property are:
1, 3, 5, 7, 9, 13, 15, 17, 19, 21,
and the pattern repeats every 22 numbers.

1.3. Computing
k
√

b (mod p). In this section, we’ll learn a general method for com-

puting
k
√

b (mod p) when p is prime, p does not divide b, and gcd(k, p− 1) = 1. This
method does not depend on looking at tables, and works even when p and k are large.

EXAMPLE: Compute
9
√

3 (mod 23).

We are taking k = 9, b = 3, and p = 23. Fermat’s theorem tells us that:
322 ≡ 1 (mod 23), and this certainly implies that:
323 ≡ 322 · 31 ≡ 3 (mod 23).
Similarly,
345 ≡ 32·22 · 31 ≡ 3 (mod 23).
This second statement enables us to solve the problem. Since 45 = 5 · 9,
35·9 ≡ 345 ≡ 3 (mod 23), so
35·9 ≡ 3 (mod 23).
Now take the 9th root of each side, which gives,
9
√

3 ≡ 9
√

35·9 ≡ 9

√

(35)9 ≡ 35 (mod 23).

In the last step, we used the statement
9
√

a9 ≡ a (mod 23), which is the idea behind
the notion of kth root, and it is guaranteed by Theorem 1.1. Anyway, we conclude
that:
9
√

3 ≡ 35 (mod 23).
It remains to compute 35 ≡ 13 (mod 23), so
9
√

3 ≡ 13 (mod 23).
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You can verify that this is correct by computing 139 ≡ 3 (mod 23). When you do
these problems, it is a good idea to check your work, because it is easy to make a
small mistake somewhere.
The key idea in this was to find a number m so that m · 9 ≡ 1 (mod 22). We can
generalize this example to give the following procedure:

5 STEP PROCEDURE FOR COMPUTING
k
√

b (mod p) when p is prime, p does
not divide b, and gcd(k, p − 1) = 1.

STEP 1: Verify that gcd(k, p− 1) = 1 and that p does not divide b. Find integers m

and s so that

m · k + s · (p − 1) = 1,

using the reverse Euclidean algorithm.
STEP 2: It follows using Fermat’s theorem that

bm·k ≡ b (mod p).

STEP 3: Take the kth root of each side of the last equality to get:

bm ≡ k
√

b (mod p).

STEP 4: Compute c ≡ bm (mod p). This is the answer, so
k
√

b ≡ c (mod p).
STEP 5: Check your answer by computing ck (mod p). If ck ≡ b (mod p), then your
answer is correct.

EXAMPLE: Compute
7
√

5 (mod 19).

SOLUTION: STEP 1: It is clear that 19 does not divide 5, and not hard to check
that gcd(7, 18) = 1. This means we can proceed with the method. We now write 1
as a combination of 7 and 18, using the reverse Euclidean algorithm. The Euclidean
algorithm gives:

18 = 2 · 7 + 4
7 = 4 + 3
4 = 3 + 1, so

1 = 4 − 3 = 3 − (7 − 4) = 2 · 4 − 7
1 = 2 · (18 − 2 · 7) − 7 = 2 · 18 − 5 · 7, so
1 = 2 · 18 − 5 · 7. Hence,
1 ≡ 2 · 18 − 5 · 7 ≡ −5 · 7 (mod 18).

STEP 2: Since 1 ≡ −5 · 7 (mod 18), and −5 ≡ 13 (mod 18), 1 ≡ 13 · 7 (mod 18). So
using the general rule:
k ≡ r (mod p − 1) implies ak ≡ ar (mod p) when p does not divide a, we get:
5 ≡ 51 ≡ 513·7 (mod 19). Taking 7th roots of each side, we get:

STEP 3:
7
√

5 ≡ 513 (mod 19).

STEP 4: Compute 513 (mod 19) through the following steps:
52 ≡ 6 (mod 19)
54 ≡ 52 · 52 ≡ 6 · 6 ≡ 36 ≡ −2 (mod 19)
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58 ≡ 54 · 54 ≡ −2 · −2 ≡ 4 (mod 19).
Since 13 = 8 + 4 + 1, 513 ≡ 58 · 54 · 5 ≡ 4 · −2 · 5 ≡ −40 ≡ −2 ≡ 17 (mod 19), so
513 ≡ 17 (mod 19).

Conclude that
7
√

5 ≡ 513 ≡ 17 (mod 19). This is our answer.

STEP 5: Check our work by verifying that 5 ≡ 177 (mod 19). This is easy to check
using a calculator, so we have found that:

ANSWER:
7
√

5 ≡ 17 (mod 19).

EXAMPLE: Compute
7
√

4 (mod 11).

STEP 1: 11 does not divide 4, and gcd(7, 10) = 1. We write 1 as a combination of 7
and 10:
1 = 3 · 7 − 2 · 10, so
1 ≡ 3 · 7 (mod 11).
STEP 2: 4 ≡ 43·7 (mod 11).

STEP 3:
7
√

4 ≡ 43 (mod 11).

STEP 4: Compute 43 ≡ 9 (mod 11), so
7
√

4 ≡ 9 (mod 11). This is the answer.
STEP 5: Check that 97 ≡ 4 (mod 11), which verifies that our answer is correct.
COMMENT: The only step that isn’t straightforward from properties of roots is
STEP 2. This uses Fermat’s theorem. The line of reasoning is:
1 = 3 · 7 − 2 · 10, so
4 ≡ 41 ≡ 43·7+−2·10 ≡ 43·7 · 410·−2, using laws of exponents, so
4 ≡ 43·7 · (410)−2 ≡ 43·7 · 1−2 ≡ 43·7 · 1 ≡ 43·7, where we used Fermat’s theorem to
conclude that 410 ≡ 1 (mod 11). Some of you may prefer to use the general rule as
above, and some of you may prefer to work out the steps (perhpas writing out a little
less detail).
Let’s now look at another example where the numbers get larger.
EXAMPLE: Compute

5
√

11 (mod 59).

SOLUTION: STEP 1: It is clear that 59 does not divide 11, and not hard to check
that gcd(5, 58) = 1. We now write 1 as a combination of 5 and 58, using the reverse
Euclidean algorithm. The Euclidean algorithm gives:

58 = 11 · 5 + 3
5 = 3 + 2
3 = 2 + 1, so

1 = 3 − 2 = 3 − (5 − 3) = 2 · 3 − 5
1 = 2 · (58 − 11 · 5) − 5 = 2 · 58 − 23 · 5, so
1 = 2 · 58 − 23 · 5.

STEP 2: It follows that 1 ≡ −23 ·5 (mod 58), so since −23 ≡ 35 (mod 58), 1 ≡ 35 ·5
(mod 58). So using the general rule:
k ≡ r (mod p − 1) implies ak ≡ ar (mod p) when p does not divide a, we get:
11 ≡ 1135·5 (mod 59). Taking 5th roots of each side, we get:

STEP 3:
5
√

11 ≡ 1135 (mod 59).
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STEP 4: Compute 1135 (mod 59) through the following steps:
112 ≡ 3 (mod 59).
114 ≡ 9 (mod 59).
118 ≡ 22 (mod 59).
1116 ≡ 12 (mod 59), (using a calculator)
1132 ≡ 26 (mod 59), so
1135 ≡ 1132 · 112 · 11 ≡ 26 · 3 · 11 ≡ 32 (mod 59).

We conclude that
5
√

11 ≡ 32 (mod 59).
STEP 5: Check that 11 ≡ 325 (mod 59). You can do this using a calculator. This
confirms that:
ANSWER:

5
√

11 ≡ 32 (mod 59).

COMMENT: Although there is nothing conceptually difficult about this example
compared to the previous one, the numbers are much larger. Unfortunately, this is a
feature of typical modular arithmetic calculations of kth roots, and it is going to get
worse when we start working with the RSA algorithm. I’ll provide an online modular
arithmetic calculator by that stage, which will make these computations easier. You
will not be able to use the modular arithmetic calculator on exams, so you should be
able to work out the kth root computations when the numbers are smaller, as in the
previous examples.

PROBLEM: Does the method outlined in this chapter enable us to compute
7
√

12
(mod 71)?

SOLUTION: If we do STEP 1, we see that 71 does not divide 12, but gcd(7, 70) = 7,

so it is not 1. This means that we will not be able to compute
7
√

12 (mod 71) using
the method of this chapter. We could still try to find solutions by listing all 7th
powers mod 71, but this is tedious, even with a modular arithmetic calculator. For
you, it will suffice to say that the method does not work.

1.4. Justification of Theorem 1.1. We can use the idea from the 5-step procedure
to justify the first assertion of Theorem 1.1:

ASSERTION: If gcd(k, p − 1) = 1, then there is exactly one
k
√

b (mod p) for any b

not divisible by p.

To justify this assertion, we have to show:
(1) There exists x (mod p) so that xk ≡ b (mod p).
(2) If y is a number and yk ≡ b (mod p), then y ≡ x (mod p).

For (1), we just use the 5-step procedure. We find integers m, s so that m ·k + s · (p−
1) = 1, and then if x ≡ bm (mod p), then xk ≡ 1 (mod p), so

k
√

b (mod p) exists.
Now suppose yk ≡ b (mod p). Then
yk·m ≡ (yk)m ≡ bm (mod p).
But since k ·m ≡ 1 (mod p−1), it follows that yk·m ≡ y1 ≡ y (mod p), so y ≡ bm ≡ x

(mod p), which justifies (2). We used the general rule t ≡ r (mod p) implies that
yt ≡ yr (mod p) when p does not divide y. Note that p does not divide y, since if p
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did divide y, then y ≡ 0 (mod p), so then b ≡ yk ≡ 0k ≡ 0 (mod p), and our b is not
divisible by p.

EXERCISES:

(1) Using the mod 11 power table in this Unit, say whether or not the following
roots exist in mod 11 arithmetic, and if they exist, find them all.
(a)

5
√

3 (mod 11).

(b)
7
√

4 (mod 11).

(c)
8
√

2 (mod 11).

(d)
8
√

7 (mod 11).
(2) For which of the following kth root problems, does the 5 step method for

computing
k
√

b (mod p) described in section 3 work? You do not have to
compute the kth root.
(a)

5
√

22 (mod 23).

(b)
7
√

13 (mod 17).

(c)
13
√

5 (mod 53).

(d)
5
√

3 (mod 31).

(3) Compute
3
√

0 (mod 41) (hint: the method of this unit does not work, but you
can do the computation anyway).

(4) Compute
11
√

3 (mod 19).

(5) Compute
11
√

5 (mod 19).

(6) Compute
7
√

3 (mod 17).

(7) Compute
7
√

2 (mod 53).

(8) Compute
7
√

5 (mod 61).

(9) Compute
17
√

13 (mod 101).


