1. Let X and Y be two sets. Suppose there exists a bijection $\phi : X \to Y$. Prove that $A(X) \cong A(Y)$, where $A(X)$ and $A(Y)$ are the bijections of X and Y.

2. Let G be a group with subgroup H. As usual, for $g \in G$, let $gHg^{-1} = \{gxg^{-1} : x \in H\}$. Let $N_G(H) = \{g \in G : gHg^{-1} = H\}$. $N_G(H)$ is called the normalizer of H in G. Prove
 (i) $N_G(H)$ is a subgroup of G.
 (ii) $H \subset N_G(H)$ and H is normal in $N_G(H)$.
 (iii) Let $K \subset G$ be a subgroup such that $H \subset K$ and H is normal in K. Prove that $K \subset N_G(H)$, so that $N_G(H)$ is the maximum subgroup of G (with respect to inclusion) containing H with H a normal subgroup.

3. For $k \in \mathbb{Z}_{>0}$, let C_k be a cyclic group of order k. Let $m, n \in \mathbb{Z}_{>0}$. If the greatest common divisor $(m, n) > 1$, then prove that $C_m \times C_n$ is not cyclic.

4. Recall that if G and H are groups, then $\text{Hom}(G, H)$ is the set of all group homomorphisms from G to H.
 (i) For any group H, prove that the map $\phi \mapsto \phi(1)$ is a bijection $\text{Hom}(\mathbb{Z}, H) \to H$.
 (ii) Let $G = \langle a \rangle$ be a cyclic with a an element of order a. Prove that the map $\phi \mapsto \phi(a)$ is a bijection $\text{Hom}(G, H) \to \{x \in H : x^n = e\}$.

5. Let H and K be groups. Let $\sigma : K \to \text{Aut}(H)$ be a homomorphism from K to the automorphism group of H. Let $H \ltimes_{\sigma} K$ be the set $\{(x, y) : x \in H, y \in K\}$. Define a product on $H \ltimes_{\sigma} K$ by the formula
 $$(x, y) \cdot (u, v) = (x \cdot \sigma(y)(u), y \cdot v),$$
 for $x, u \in H$ and $y, v \in K$. Prove that $H \ltimes_{\sigma} K$ with this product is a group with identity (e_H, e_K) where e_H, e_K are the identity elements of H and K respectively.

6. Let G be a group with normal subgroup H and subgroup K. For $z \in K$, define $c_z : H \to H$ by $c_z(x) = zxz^{-1}$.
 (i) Prove that $c_z \in \text{Aut}(H)$, the automorphism group of H, and $\phi : K \to \text{Aut}(H)$ given by $\phi(z) = c_z$ is a group homomorphism.
 (ii) Define $\chi : H \ltimes_{\phi} K \to G$ by the formula $\chi(x, y) = x \cdot y$, using the product in G. If $H \cap K = \{e\}$, then prove that χ is an injective group homomorphism.

7. For $n \in \mathbb{Z}_{>1}$, let $Z_n := \mathbb{Z}/n\mathbb{Z}$, and $Z_n^\times := (\mathbb{Z}/n\mathbb{Z})^\times$.
 (i) Show that Z_n^\times is a cyclic group of order 6.
 (ii) For $m = 2, 3$ construct a group homomorphism $\phi : Z_m \to \text{Aut}(Z_7) \cong Z_7^\times$ (hint: problem 4 may be useful).
 (iii) Construct nonabelian groups of order 14 and 21.

8. Let H, K be groups and let $G = H \times K$. Let $A = \{(x, e) : x \in H\}$ and let $B = \{(e, y) : y \in K\}$. We stated in class that $A \cong H$ and $B \cong K$. Prove that A and B are normal subgroups of G and $G/A \cong K$ and $G/B \cong H$.

9. If H and K are groups, prove that $H \times K \cong K \times H$.

10. Prove that $S_n = <\sigma, \tau>$, the group generated by σ and τ, where $\sigma = (1, 2, 3, \ldots, n)$ is the n-cycle and $\tau = (1, 2)$.
11. (a) Let G be a group with normal subgroup N and let H be a subgroup of G. Let $\pi : G \rightarrow G/N$ be the quotient homomorphism where $\pi(a) = aN$ for $a \in G$. Prove that $\pi(H) = HN/N$.

(b) Let n be a positive integer, and in part (a), let $G = \mathbb{Z}$ and let $N = n\mathbb{Z}$. If $H = m\mathbb{Z}$ with m a positive integer, prove that $\pi(H) \cong (m, n)\mathbb{Z}/n\mathbb{Z}$.

12. (i) Let G be a group with center $Z(G)$. If $G/Z(G)$ is cyclic, then prove that G is abelian.

(ii) Give an example of a group G such that $G/Z(G)$ is abelian, but G is not abelian.