1. Let $G = A_n$, the alternating group in S_n. Let H be the subgroup of A_n generated by all 3-cycles. Prove that $H = A_n$ (hint: A_n is generated by products $\tau_1 \circ \tau_2$, where τ_1, τ_2 are transpositions in S_n. Recall that for $\sigma \in S_n$, $\text{Supp}(\sigma) = \{i : \sigma(i) \neq i\}$. Show that if $\text{Supp}(\tau_1)$ intersects $\text{Supp}(\tau_2)$, then $\tau_1 \circ \tau_2$ is either the identity or a 3-cycle. If $\text{Supp}(\tau_1)$ does not intersect $\text{Supp}(\tau_2)$, show that $\tau_1 \circ \tau_2$ is a product of two 3-cycles. For example, $(1, 2) \circ (3, 4) = (1, 2, 3) \circ (2, 3, 4)$. Conclude that generators of A_n are in H.

2. Let $n \geq 5$. Let g, h be 3-cycles, and hence in A_n. Prove that g is conjugate to h in A_n (hint: we have seen that g is conjugate to h in S_n. Let $g = (1, 2, 3)$ and let $h = (2, 1, 3)$. Then if $\tau = (1, 2)$, then $\tau g \tau^{-1} = h$, but $\tau \not\in A_n$. Find a way to adjust τ to an element $\sigma \in A_n$ so $\sigma g \sigma^{-1} = h$. We really need $n \geq 5$. g is not conjugate to h in A_4).

3. Determine the conjugacy classes in the dihedral group $G = D_{2p}$, where p is an odd prime. For each conjugacy class C, compute $C_G(x)$ for some $x \in C$.

4. Determine the conjugacy classes in $G = D_{24}$. For each conjugacy class C in G, compute $C_G(x)$ for some $x \in C$.

5. Let $V = \mathbb{R}^n$, and let $G = O(n, \mathbb{R}) = \{g \in GL(n, \mathbb{R}) : g^{tr} = g^{-1}\}$. Determine the G-orbits on V. Show $O(n-1, \mathbb{R}) \cong H := \{g \in G : g \cdot e_n = e_n\}$. Construct a bijection $O(n, \mathbb{R})/H \rightarrow S^{n-1}$, where $S^{n-1} = \{v \in V : v \cdot v = 1\}$ is the usual $n-1$-dimensional sphere.

6. Let F be a field with 3 elements. Show that $|SL(2, F)| = |S_4|$. Is $SL(2, F) \cong S_4$? Explain your answer.

7. Let $G = S_4$. Consider the subgroup

$$V = \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

(i) Prove that V is a normal subgroup of G.

(ii) Prove that $S_4/V \cong S_3$.

8. Let G be a finite group and let p be the smallest prime dividing $|G|$. Let H be a subgroup of G and suppose $[G : H] = p$. Prove that H is a normal subgroup of G (note: when $p=2$, this problem is the same as problem 9 of Problem Set 2. When $p = 3$, this problem is the same as the second problem on the exam, and the hints there may be helpful).

9. Find at least one 2-Sylow subgroup of each of S_3, S_4, S_5, and S_6. For extra credit, do the same problem for S_8. You do not need to find more than one.