Math 60210, Basic Algebra, Problem Set 8, Fall 2018
Due Wed, October 31

Do 8 of these 12 problems. Everyone should read 5, 9, and 10 and remember the notation. As in class, \(R[x] \) is the polynomial ring with coefficients in \(R \).

1. (A) Let \(R \) be a ring. An element \(x \in R \) is called nilpotent if \(x^n = 0 \) for some \(n > 0 \). If \(x \in R \) is nilpotent, prove that \(1 + x \in R^\neq \).

(B) If \(F \) is a field and \(A \in M(n, F) \) has the property that the entries \(A_{i,j} = 0 \) for \(i \geq j \), prove that \((I + A) \) is invertible and give a formula for \((I + A)^{-1} \).

2. Let \(d \) be a square-free integer, i.e., \(d \neq 1 \) and \(m^2 \) does not divide \(d \) for every integer \(m \geq 2 \). Let \(E = \mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\} \). Prove that \(E \) is a subring of \(\mathbb{C} \). Is \(E \) a field? Explain why or why not.

3. Let \(d \) be a square-free integer not equal to 1. Let \(R = \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\} \).
 (i) Prove that \(R \) is a subring of \(\mathbb{C} \).
 (ii) Let \(N(\alpha) = \alpha \cdot \tau(\alpha) \), where for \(\alpha = a + b\sqrt{d} \in R \), \(\tau(\alpha) = a - b\sqrt{d} \). Prove that \(N(\alpha) \in \mathbb{Z} \), and \(N(\alpha \cdot \beta) = N(\alpha) \cdot N(\beta) \) for all \(\alpha, \beta \in R \).
 (iii) Let \(d < 0 \). Compute the unit group \(R^\neq \) of \(R \) if \(d < 0 \) (hint: show \(\alpha \in R^\neq \) if and only if \(N(\alpha) = 1 \)).

4. Let \(\zeta = e^{2\pi i/3} \). Let \(R = \{a + b\zeta : a, b \in \mathbb{Z}\} \). Prove that \(R \) is a subring of \(\mathbb{C} \) and compute the unit group \(R^\neq \) of \(R \) if \(d < 0 \) (hint: show \(\alpha \in R^\neq \) if and only if \(N(\alpha) = 1 \)).

5. Let \(R \) be a ring, and let \(R^\times \) be the set of all units of \(R \). Prove that \(R^\times \) is a group under multiplication.

6. (i) Let \(R \) be an integral domain. Prove that the unit group \(R[x]^\neq \) of \(R[x] \) is \(R^\times \).
 (ii) Let \(R \) be a ring with nonzero (nilpotent) element \(a \) with \(a^n = 0 \) for some \(n \). Prove that \(1 - ax \) is a unit of \(R[x] \).

7. Let \(F \) be a field. Prove that if \(f = \sum_{i=0}^\infty a_i x^i \in F[[x]] \), then \(f \) is a unit if and only if \(a_0 \neq 0 \). Can you find the unit group of \(R[[x]]^\times \) for an integral domain \(R \)?

8. Let \(H \) be the quaternions, i.e.,
 \[
 H = \{A \in M(2, \mathbb{C}) : A = \begin{pmatrix} \alpha & \beta \\ -\beta^* & \alpha^* \end{pmatrix} \},
 \]
 and for \(A \) as above, we call \(\alpha \) and \(\beta \) the coordinates of \(A \). We said in class that \(H \) is a subring of the two by two complex matrices \(M(2, \mathbb{C}) \), and \(H \) is a real subspace of \(M(2, \mathbb{C}) \) with basis \(1, I, J, K \), where \(1 \) is the 2 by 2 identity matrix,
 \[
 I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.
 \]
 We defined \(N(A) = \frac{1}{2} \text{Tr}(A \cdot -A^*) = |\alpha|^2 + |\beta|^2 \) for \(A \) with coordinates \(\alpha, \beta \).
 (i) For \(A, B \in H \), prove that \(N(A \cdot B) = N(A) \cdot N(B) \).
 (ii) Let \(H_1 := \{A \in H : N(A) = 1 \} \). Prove that \(H_1 \) is a group using the multiplication in \(H \) (the group \(H_1 \) is often called \(SU(2) \), the determinant one unitary 2 by 2 matrices).
 (iii) Prove that center \(Z(H) = R \cdot 1 \), i.e., the real multiples of the identity matrix.

9. Let \(R \) be a ring and let \(a \in R \). Let \(C_R(a) = \{x \in R : xa = ax\} \). Prove that \(C_R(a) \) is a subring of \(R \).
10. Let R be a ring and let $\{S_i\}_{i \in I}$ be a family of subrings of R. Prove that $\cap_{i \in I} S_i$ is a subring of R. Let $Z(R) = \{x \in R : xy = yx, \forall y \in R\}$ ($Z(R)$ is called the center of R). Show $Z(R) = \cap_{a \in R} C_R(a)$, so $Z(R)$ is a subring of R.

11. Let F be the free group on a set S with two elements and let x and y be the generators of F corresponding to elements of S. Fix $n > 0$, and let $A(n) = F/N$, where N is the smallest normal subgroup of F containing $x^n, y^2,$ and $yxy^{-1}x$.

(i) Let $a = xN$ and let $b = yN$. Prove that every element of $A(n)$ can be written in the form a^ib^j, where $i = 0, \ldots, n - 1$ and $j = 0, 1$, and conclude that $|A(n)| \leq 2n$.

(ii) Prove that $A(n) \cong D_{2n}$ (hint: there is a surjective homomorphism from F to D_{2n}).

12. Let $R = M(n, F)$, where F is a field. Let I be a two-sided ideal of R. Prove that either $I = 0$ or $I = R$ (hint: $aI \subset I$ and $Ia \subset I$ for every $a \in R$. Use elementary matrices).