Synthesis and Structure of the Alkali-Metal Amalgams $\boldsymbol{A}_{3} \mathrm{Hg}_{20}$ ($A=\mathrm{Rb}, \mathrm{Cs}$), $\mathrm{K}_{3} \mathrm{Hg}_{11}, \mathrm{Cs}_{5} \mathrm{Hg}_{19}$, and $\mathrm{A}_{7} \mathrm{Hg}_{31}(A=\mathrm{K}, \mathrm{Rb})$

Evgeny Todorov and Slavi C. Sevov ${ }^{1}$
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556

Received September 20, 1999; in revised form November 2, 1999; accepted November 5, 1999

The synthesis and single-crystal structures of four alkalimetal amalgams are reported. The compounds $\boldsymbol{A}_{3} \mathbf{H g}_{20}(A=R b$, Cs) are of new structural type ($P m-3 n, Z=2, a=10.737(1) \AA$ and 10.913(1) \AA, for $A=R b$ and Cs , respectively), while $\mathrm{K}_{3} \mathbf{H g}_{11}$ is the first example of a mercury compound with the $\alpha-\mathrm{La}_{3} \mathrm{Al}_{11^{-}}$ type structure (Immm, $Z=2, a=5.122(1) \AA, b=10.063(2) \AA$, $c=14.782(3) \AA)$. The structure of $\boldsymbol{A}_{7} \mathbf{H g}_{31}(A=K, R b)$ determined from single crystal ($P 6 / \mathrm{mmm}, Z=1, a=10.850(2) \AA$ and $11.000(2) \AA, c=10.210(2) \AA$ and 10.377(3) \AA, for $A=K$ and $R b$, respectively) is compared with that of $\mathrm{K}_{7} \mathbf{H g}_{31}$, previously known from powder diffraction only. $\mathrm{Cs}_{5} \mathrm{Hg}_{19}$ ($I 4 / m, Z=2, a=$ $11.803(3) \AA, c=10.814(5) \AA$) is isostructural with the known $\mathbf{R b}_{5} \mathbf{H g}_{19}$. © 2000 Academic Press

INTRODUCTION

Among the most important physical and chemical properties of mercury is its ability to dissolve metals. It can be used as a meaning for their extraction and purification. The alloys that are formed, named amalgams, are often viscous liquids or ductile solids. However, depending on the nature of the other metal and its fraction in the amalgam, different compounds with defined stoichiometries and structures can be formed.

The alkali metals are among the few elements that are known to form crystalline intermetallic compounds with mercury. Some of their approximate chemical formulas were derived at the beginning of the century from thermal analyses (1). With the utilization of X-ray crystallography many structures of alkali-metal amalgams were solved and phase transitions and structural relations were studied (2). Currently, the number of structurally characterized $A-\mathrm{Hg}$ compounds ($A=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$) is close to two dozen (Fig. 1). Here we report the synthesis and structure of the mercury-rich compounds $A_{5} \mathrm{Hg}_{19}, A_{3} \mathrm{Hg}_{20}(A=\mathrm{Rb}, \mathrm{Cs})$,

[^0]$\mathrm{K}_{3} \mathrm{Hg}_{11}, A_{7} \mathrm{Hg}_{31}(A=\mathrm{K}, \mathrm{Rb})$. These systems were studied as side products of reactions designed to produce ternary phases of alkali-metals and elements of groups 12 and 14 (3).

EXPERIMENTAL SECTION

Synthesis

All compounds are air sensitive and decompose rapidly to elemental mercury and alkali-metal hydroxides. All operations were performed under inert atmosphere or vacuum. Details on the preparation and handling can be found elsewhere (3). The compounds were synthesized in high yields by heating stoichiometric mixtures of the elements (Alfa-Aesar) at $600^{\circ} \mathrm{C}$ for 3 to 10 h and slowly cooling them to room temperature $\left(5^{\circ} / \mathrm{h}\right)$. Often a few lines of other unidentified phases were present in the X-ray diffraction patterns. The compounds $\mathrm{K}_{7} \mathrm{Hg}_{31}$ and $A_{3} \mathrm{Hg}_{20}(A=\mathrm{Rb}$, $\mathrm{Cs})$ were initially identified in the products of reactions loaded as AHg_{5}. The interest toward this particular composition was based on possible analogies with the recently reported compounds $A \mathrm{Cd}_{5+x}(A=\mathrm{Na}, \mathrm{K})$ with channel or framework structures (4). A few crystals of the compound $\mathrm{K}_{3} \mathrm{Hg}_{11}$ were initially found in the product of a reaction loaded as $\mathrm{K}_{8} \mathrm{Cd}_{5} \mathrm{Hg}_{31}$. The same stoichiometry, $A_{3} \mathrm{Hg}_{11}$, but with $A=\mathrm{Cs}$ or Rb provided the compounds $\mathrm{Cs}_{5} \mathrm{Hg}_{19}$ and $\mathrm{Rb}_{5} \mathrm{Hg}_{19}$, respectively. Finally, the attempt to mix K and Rb in an amalgam with composition $\mathrm{K}_{7 / 2} \mathrm{Rb}_{7 / 2} \mathrm{Hg}_{31}$ resulted in the synthesis of $\mathrm{Rb}_{7} \mathrm{Hg}_{31}$.

X-Ray Diffraction Studies

X-ray powder diffraction patterns of the reaction products were taken on an Enraf-Nonius Guinier camera with $\mathrm{CuK} \alpha_{1}$ radiation and silicon as internal standard. Single crystals from all of the compounds were sealed in glass capillaries and used for diffraction data collection on CAD4 diffractometer with monochromated $\operatorname{Mo} K \alpha$ radiation, at room temperature. The structures were solved and refined

FIG. 1. Known compounds in the alkali-metal - mercury systems. The compounds reported in this work are marked with \times.
on F^{2} with the SHELXTL-V5.0 package. Details on the data collection and refinement are listed in Table 1. The final residual factors are relatively high, most likely due to the significant absorption of mercury. Absorption corrections based on Ψ-scans were tried, but they were not always successful. The final positional and equivalent isotropic displacement parameters, anisotropic parameters, and important distances are listed in Tables 2, 3, and 4, respectively.

DESCRIPTION OF THE STRUCTURES

Only the compounds $A_{3} \mathrm{Hg}_{20}$ are structurally novel. The structure of $\mathrm{K}_{3} \mathrm{Hg}_{11}$ is new for an amalgam, but it belongs to the known $\alpha-\mathrm{La}_{3} \mathrm{Al}_{11}$-type structure, which comprises numerous examples of intermetallic compounds, especially rear-earth alluminides (5). A review article by Dieseroth discusses the structure of $\mathrm{K}_{7} \mathrm{Hg}_{31}$ (2a) derived from X-ray powder diffraction investigations. Our single-crystal studies on $\mathrm{K}_{7} \mathrm{Hg}_{31}$ and $\mathrm{Rb}_{7} \mathrm{Hg}_{31}$, however, show some differences in the structure.
$A_{3} \mathrm{Hg}_{20}$
The structure can be explained in two different ways-as built of linked octa-capped centered icosahedra of mercury, $\mathrm{Hg} @ \mathrm{Hg}_{12} @ \mathrm{Hg}_{8}(\mathbf{1})$, or as related to the clathrate-I framework. In the first approach, the atoms Hg 1 center icosahedra of 12 Hg 2 atoms stacked in bcc lattice (Fig. 2). The icosahedron has the rare T_{h} point group symmetry with three pairs of opposing edges that are much shorter than the remaining 12 (2.855(9) vs $3.445(6)$ and $2.937(9)$ vs $3.451(5) \AA$ for $A=\mathrm{Rb}$ and Cs , respectively). The eight equilateral triangular faces are capped by Hg 3 atoms resulting in a $20-$ atom polyhedron. The Hg 3 atoms cap faces of two adjacent icosahedra and connect them. They can also be looked at as centers of trigonal prisms of six Hg 2 atoms ($D_{3 h}$ symmetry) oriented along the body diagonals of the unit cell. The Hg 4 atom is exobonded to Hg 2 atoms of four different icosahedra with equal distances of 2.848(4) \AA for $\mathrm{Rb}_{3} \mathrm{Hg}_{20}$ and $2.925(4) \AA$ for $\mathrm{Cs}_{3} \mathrm{Hg}_{20}$. The geometry around it (point group $D_{2 d}$) is somewhat distorted from ideal tetrahedral. The angles $\mathrm{Hg} 2-\mathrm{Hg} 4-\mathrm{Hg} 2$ have values of 101.24(8), 127.6(2) and $100.68(7), 129.0(2)^{\circ}$ for the rubidium and cesium compounds, respectively.

2

An interesting comparison can be made between the structure of $A_{3} \mathrm{Hg}_{20}$ and that of clathrate-I, $X_{4} Y_{23}$ (6). Both crystallize in the space group $P m-3 n$ (223) and have five distinct atomic positions. The difference between the two is in the multiplicity of one position: Hg 3 in $A_{3} \mathrm{Hg}_{20}$ is at the $8 e(1 / 4,1 / 4,1 / 4)$ position while it is replaced by a dimer of atoms at $16 i(x, x, x)$ in the clathrate structure (Fig. 3). In other words, a dumbbell group in the clathrate structure is substituted by a single metal atom in $A_{3} \mathrm{Hg}_{20}$ (the darker atoms in Fig. 2). The two fused building cages in the clath-rate-I structure are a 20 -atom polyhedron, a pyritohedron,

TABLE 1
Crystallographic Data for $\boldsymbol{A}_{\boldsymbol{x}} \mathbf{H g}_{\boldsymbol{y}}$

Empirical formula	$\mathrm{Rb}_{3} \mathrm{Hg}_{20}$	$\mathrm{Cs}_{3} \mathrm{Hg}_{20}$	$\mathrm{K}_{3} \mathrm{Hg}_{11}$	$\mathrm{Cs}_{5} \mathrm{Hg}_{19}$	$\mathrm{K}_{7} \mathrm{Hg}_{31}$
Formula weight	8536.42	8821.06	2323.78	4475.74	6491.99
Space group, Z	Pm-3n, 2	Pm-3n, 2	Immm, 2	I4/m, 2	P6/mmm, 1
a, \AA	10.737(1)	10.913(1)	5.122(1)	11.803(3)	10.850(2)
b, \AA			10.063(2)		
c, \AA			14.782(3)	10.814(5)	10.210(2)
V, \AA^{3}	1237.7(2)	1299.7(3)	761.9(3)	1506.5(9)	1040.9(3)
$\rho_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	11.453	11.27	10.129	9.867	10.356
$\mu\left(\mathrm{mm}^{-1}\right)$	129.3	121.7	111.1	102.3	114.5
$2 \theta_{\text {max }}$ (deg)	50	50	50	50	40
h, k, l range	0/12, 0/12, 0/12	- 12/12, 0/12, 0/12	$-6 / 6,0 / 11,0 / 17$	0/14, 0/14, 0/12	- 10/10, 0/10, 0/9
Crystal size (mm)	$0.24 \times 0.14 \times 0.10$	$0.16 \times 0.14 \times 0.10$	$0.16 \times 0.12 \times 0.10$	$0.20 \times 0.12 \times 0.10$	$0.14 \times 0.12 \times 0.12$
Total/unique reflections	1285/220	2527/230	734/411	762/563	1118/234
Parameters	15	15	27	32	31
Goodness-of-fit on F^{2}	1.102	1.134	0.976	1.035	0.994
$R_{1}, \mathrm{w} R_{2}\left[I>2 \sigma_{I}\right](\%)$	8.52, 22.16	7.15, 15.56	8.04, 17.96	6.56, 13.81	8.90, 18.16
$R_{1}, \mathrm{w} R_{2}$ (all data)	14.97, 25.95	12.95, 18.09	12.97, 21.02	10.72, 15.76	16.08, 22.51
Max. min. $\Delta \rho\left(\mathrm{e} \AA^{-13}\right)$	$3.88,-2.50$	$3.89,-5.07$	$4.65,-5.04$	3.64, - 2.68	3.14, - 3.38

of 5^{12} type (the notation m^{i} shows the presence of $i m$ angular faces), and a 24 -atom polyhedron of type $5^{12} 6^{2}$. The corresponding two polyhedra in the structure of $A_{3} \mathrm{Hg}_{20}$ are an icosahedron of type 3^{20} and a 20 -atom polyhedron of $3^{12} 4^{8} 6^{2}$ type, respectively. In fact, the pyritohedron can be described as originating from an octa-capped icosahedron in which the capping atoms are moved closer to the faces, $\mathbf{1} \rightarrow \mathbf{2}$ (above). The result is a new anionic framework in which the atoms have a higher number of bonding interac-

FIG. 2. The structure of $A_{3} \mathrm{Hg}_{20}$ built of vertices sharing octacapped centered icosahedra $\mathrm{Hg}-\mathrm{Hg}_{12}-\mathrm{Hg}_{8}$. The four small bonded and the big spheres are atoms Hg 4 and alkali-metal atoms, respectively.
tions. This is more or less expected since mercury has fewer electrons compared to the elements of group 14 that can form the clathrate-I structure.

Another significant difference between the clathrate-I structure and $A_{3} \mathrm{Hg}_{20}$ is the type of atom on position $2 a(0$, $0,0)$. While in the clathrate structure it is occupied by an alkali metal, in $A_{3} \mathrm{Hg}_{20}$ a mercury atom, Hg 1 , is found at that position. Within the approximations of the extendedHückel theory this Hg 1 atom is with slightly positive charge of +0.3 while the rest of the mercury atoms have negative charges anywhere between -0.1 and -0.3 . In other words, Hg 1 can be viewed as electron-donating atom similar to the cations in the clathrate structures. Furthermore, this mercury atom provides additional orbitals for the framework bonding. Similar building units of centered icosahedra $Y @ Y_{12}$ are known in the phases $X Y_{13}$ where $X=$ alkali or alkaline-earth metal and $Y=\mathrm{Cd}, \mathrm{Zn}, \mathrm{Be}(7)$, but have not been observed in amalgams before. The compounds $X Y_{11}$, among them KHg_{11}, are also related to the $X Y_{13}$ structure and contain building units of $Y @ Y_{12}$ but these units are rather cuboctahedra and not icosahedra (2c). Empty icosahedra of Hg_{12}, on the other hand, have been recently characterized in $\mathrm{K}_{29} \mathrm{Hg}_{48}$ (2a).
$A_{5} H g_{I 9}(A=R b, C s)$
Two isostructural compounds were synthesized and structurally characterized by single-crystal studies. The structure of $\mathrm{Rb}_{5} \mathrm{Hg}_{19}$ has been described before. It can be related to the BaAl_{4}-type structure in the following way (Fig. 4). The building unit in the structure of BaAl_{4} is a bicapped truncated square prism, 3a, with 18 vertices. If one of the edge dimers is condensed into an atom, a
polyhedron of 17 vertices is obtained, 3b. The structure of $\mathrm{A}_{5} \mathrm{Hg}_{19}$ is built of both 17 - and 18 -vertex polyhedra. The 18 -atom polyhedra are linked only through their axial vertices and they form chains that are surrounded by the 17-vertex polyhedra. The formula of the compound can be represented as a defect BaAl_{4}, i.e., $A_{5} \mathrm{Hg}_{19}=A \mathrm{Hg}_{4-x}$, where $x=0.20$.
define which one is preferred (8). The compound $\mathrm{K}_{3} \mathrm{Hg}_{11}$ provides not only the first example of an amalgam with the $\alpha-\mathrm{La}_{3} \mathrm{Al}_{11}$ structure but also the first one with alkali metal instead of rear-earth element. Therefore, it is with the largest cation that crystallize in this structural type since $r\left(\mathrm{~K}^{+}\right)$ $=1.52 \AA$ while the corresponding radii of the rare-earths fall in the range from 1.00 to $1.17 \AA$ (9). Also, among the

3a

3b

3c

$K_{3} \mathrm{Hg}_{11}$

The compound belongs to the $\alpha-\mathrm{La}_{3} \mathrm{Al}_{11}$-type structure. This structural type includes primarily rear-earth compounds with aluminum and zinc $(5,8)$. The structure can be also related to the BaAl_{4}-type structure as another defect version of the latter (Fig. 4), its formula can be rewritten as $\mathrm{K}_{3} \mathrm{Hg}_{(12-1)}$ or KHg_{4-x} where $x=0.25(2 \mathrm{~b}, 8)$. The building units in this structure can also be derived from the 18 -vertex polyhedron, $\mathbf{3 a}$, found in BaAl_{4}. Instead of condensing one edge dimer of atoms that results in a 17 -vertex unit as in $A_{5} \mathrm{Hg}_{19}$, in this case two such edge dimers are condensed to form a 16 -vertex polyhedron, $\mathbf{3 c}$. This and the original 18-vertex polyhedron are the building units in the structure of $\mathrm{K}_{3} \mathrm{Hg}_{11}$. The 18 -vertex polyhedra share two opposite six-membered faces and the two axial atoms with four other polyhedra of the same kind and form layers. These layers are in turn separated by layers of the 16-atom vertex polyhedra.

Several factors, among which the size of the cation and the number of available electrons, are thought to influence the relative stability of the two structures, and therefore they
compounds with this structure, $\mathrm{K}_{3} \mathrm{Hg}_{11}$ is the compound with the lowest electron count since its valence-electron concentration (VEC), i.e., the number of electrons per framework atom, is 2.27 while the corresponding numbers for the other isostructural compounds are in the range 2.82-3.82. Thus, the existence of $\mathrm{K}_{3} \mathrm{Hg}_{11}$ establishes wider ranges for both the VEC and the cation size, where the structure type of $\alpha-\mathrm{La}_{3} \mathrm{Al}_{11}$ can be stable.

$A_{7} \mathrm{Hg}_{31}$

The structure of $\mathrm{K}_{7} \mathrm{Hg}_{31}$ was reported (2a) as a modified $\mathrm{Ba}_{7} \mathrm{Cd}_{31}$-type structure (10). It was solved and refined from X-ray powder diffraction data in space group $P 6_{3} / \mathrm{mmc}$ with doubled c axis with respect to the structure of $\mathrm{Ba}_{7} \mathrm{Cd}_{31}$, which crystallizes in $P 6 / \mathrm{mmm}$. According to the authors, the structure of $\mathrm{Ba}_{7} \mathrm{Cd}_{31}$ is perhaps not entirely correct. They suggest that a position that was originally refined as statistically disordered and with a half occupancy should be refined as an ordered position that alternates as full and vacant, and causes the doubling of the axis. In $P 6 / \mathrm{mmm}$ this

TABLE 2
Positional and Equivalent Isotropic Displacement Parameters
for $A_{x} \mathbf{H g}_{y}$

Atom		x	y	z	$U_{\text {eq }}$
$\mathrm{Rb}_{3} \mathrm{Hg}_{20}$					
$\mathrm{Hg}(1)$	$2 a$	0	0	0	0.062(4)
Hg(2)	24k	0.2620(4)	0.1329(4)	0	0.066(2)
Hg(3)	$8 e$	1/4	1/4	1/4	0.051(2)
Hg(4)	6 c	1/4	0	1/2	0.075(3)
Rb	$6 d$	1/4	1/2	0	0.030(4)
$\mathrm{Cs}_{3} \mathrm{Hg}_{20}$					
$\mathrm{Hg}(1)$	$2 a$	0	0	0	0.067(4)
$\mathrm{Hg}(2)$	24k	0.2584(4)	0.1341(4)	0	0.051(1)
$\mathrm{Hg}(3)$	$8 e$	1/4	1/4	1/4	0.037(1)
$\mathrm{Hg}(4)$	6 c	1/4	0	1/2	0.069(3)
Cs	$6 d$	1/4	1/2	0	0.025(2)
$\mathrm{K}_{3} \mathrm{Hg}_{11}$					
Hg(1)	$8 l$	0	0.2920(2)	0.1402(2)	0.0332(9)
Hg(2)	81	0	0.3559(2)	0.3410(2)	0.0321(9)
Hg(3)	$4 h$	0	0.8254(4)	1/2	0.050(2)
Hg(4)	$2 d$	1/2	0	1/2	0.084(4)
K(5)	$2 a$	0	0	0	0.034(8)
K(6)	$4 i$	0	0	0.709(1)	0.030(5)
$\mathrm{Cs}_{5} \mathrm{Hg}_{19}$					
Hg(2)	$4 d$	0	1/2	1/4	0.036(1)
$\mathrm{Hg}(3)$	$16 i$	0.0795(2)	0.1726(2)	0.2180(2)	0.0410(7)
$\mathrm{Hg}(4)$	$2 a$	0	0	0	0.049(2)
$\mathrm{Cs}(1)$	$8 h$	0.3254(3)	0.1191(4)	0	0.031(1)
Cs(2)	$2 b$	0	0	1/2	0.039(2)
$\mathrm{K}_{7} \mathrm{Hg}_{31}$					
Hg(1)	$4 h$	1/3	2/3	0.357(1)	0.047(4)
Hg(2)	$6 i$	1/2	0	0.1651(7)	0.060(4)
Hg(3)	$6 j$	0.2693(9)	0	0	0.071(4)
$\mathrm{Hg}(4)$	$6 m$	0.105(1)	0.210(2)	1/2	0.18(2)
					50\% occup.
$\mathrm{Hg}(5)$	120	0.1849(4)	0.3697(8)	0.2679(6)	0.067(3)
K(1)	2 c	1/3	2/3	0	0.08(3)
K(2)	$2 e$	0	0	0.210(8)	$0.06(3)$
K(3)	3 g	1/2	0	1/2	0.09(3)

FIG. 3. (Top) Part of the clathrate-I type structure built form the two type cages: 20 -atom pyritohedron $\left(5^{12}\right)$ and the 24 -atom polyhedron $\left(5^{12} 6^{2}\right)$. The atoms at position $16 i$ are shown as darker spheres. If every couple of them is replaced by a single atom, the structure of $A_{3} \mathrm{Hg}_{20}$ (bottom) is obtained.
intensities in the range 1 to 3σ. They should be considered as sporadic events rather than regularities, especially when compared to the reflections with even l for which the intensities reach 4300σ. None of the axial photographs suggested doubling of the c axis either.

One of the building units in this structure is a 20 -atom polyhedron. It shares three faces with its neighbors, thereby forming a layer of fused polyhedra. The formed hexagonal openings in the layers have the geometry of double "drums." Similar double drum units have been observed before, in

FIG. 4. The crystal structures of $\mathrm{K}_{3} \mathrm{Hg}_{11}$ and $A_{5} \mathrm{Hg}_{19}(A=\mathrm{Rb}, \mathrm{Cs})$ as related to the structure of $\mathrm{Ba} A 14$. The difference between the three structures reflects the number of $\mathrm{Hg}-\mathrm{Hg}$ bonds condensed to an atom.
$\mathrm{Na}_{8} \mathrm{~K}_{23} \mathrm{Cd}_{12} \operatorname{In}_{48}$ and $\mathrm{KIn}_{2-x} \mathrm{Cd}_{x}$ (11). The two outer and the one inner hexagons in this structure are made of Hg 5 and Hg 3 atoms, respectively (Fig. 5). Each of the two drums is centered by an alkali atom situated closer to the outer faces, avoiding in this way both the short $A-A$ and $A-\mathrm{Hg} 3$ distances (the inner hexagon is significantly smaller than the outer one).

In summary, the mercury-rich alkali-metal amalgams reported here illustrate the structural richness of these simple, binary systems. It is notable that this number and variety of structures exist in a relatively narrow stoichiometric window within the alkali-metal fractional interval of only 0.13 to 0.21 .

TABLE 4
Important Interatomic Distances

$\mathrm{Rb}_{3} \mathrm{Hg}_{20} \mathrm{Cs}_{3} \mathrm{Hg}_{20}$				
$\mathrm{Hg}(1)-\mathrm{Hg}(2)$		$12 \times$	3.155(4)	3.178(4)
$\mathrm{Hg}(2)-\mathrm{Hg}(4)$			2.848(4)	2.924(4)
$\mathrm{Hg}(2)$			2.854(9)	2.928 (8)
$\mathrm{Hg}(3)$		$2 \times$	2.967(2)	3.008(2)
$\mathrm{Hg}(1)$			3.155(4)	3.178(4)
$\mathrm{Hg}(2)$		$4 \times$	3.446 (5)	$3.455(5)$
A			3.943 (5)	3.994(4)
A		$2 \times$	3.971(4)	4.067(3)
$\mathrm{Hg}(3)-\mathrm{Hg}(2)$		$6 \times$	2.967(2)	3.008(2)
A		$3 \times$	3.7960 (4)	3.8583(5)
$\mathrm{Hg}(4)-\mathrm{Hg}(2)$		$4 \times$	2.848(4)	2.924(4)
A		$4 \times$	3.7960(4)	3.8583(5)
A $\mathrm{Hg}(2)$		$4 \times$	3.7960 (4)	3.8583(5)
$\mathrm{Hg}(3)$		$4 \times$	3.7960(4)	3.8583(5)
$\mathrm{Hg}(4)$		$4 \times$	3.7960(4)	3.8583(5)
$\mathrm{Hg}(2)$		$4 \times$	3.943 (5)	3.994(4)
$\mathrm{Hg}(2)$		$4 \times$	3.971(4)	4.067(3)
$\mathrm{K}_{3} \mathrm{Hg}_{11}$				
$\mathrm{Hg}(1) \mathrm{Hg}(4)$		2.946(2)	$\mathrm{Hg}(1)$	3.036(4)
$\mathrm{Hg}(2)$	$2 \times$	$2.975(2)$	$\mathrm{Hg}(3) \mathrm{Hg}(2) 2 \times$	2.976 (4)
$\mathrm{Hg}(2)$		3.036(4)	$\operatorname{Hg}(4) 2 \times$	3.106(2)
$\mathrm{Hg}(3)$	$2 \times$	3.312(2)	$\operatorname{Hg}(1) 4 \times$	3.312(2)
$\mathrm{Hg}(2) \mathrm{Hg}(2)$		$2.900(5)$	$\mathrm{Hg}(4) \mathrm{Hg}(1){ }^{\text {a }} \times$	2.946 (2)
$\mathrm{Hg}(3)$		2.976 (4)	$\operatorname{Hg}(3) 4 \times$	3.106(2)
$\mathrm{Hg}(1)$	$2 \times$	2.975(2)		
$\mathrm{Cs}_{5} \mathrm{Hg}_{19}$				
$\mathrm{Hg}(1)-\mathrm{Hg}(2)$	$1 \times$	2.998(2)	$\operatorname{Hg}(4) 1 \times$	3.254(3)
$\mathrm{Hg}(1)$	$1 \times$	$3.015(5)$	$\operatorname{Hg}(2) 1 \times$	3.991(2)
$\mathrm{Hg}(3)$	$1 \times$	3.023(3)	Cs(1) $1 \times$	$3.782(4)$
Hg(3)	$1 \times$	$3.075(3)$	$\mathrm{Cs}(2) 1 \times$	3.785(2)
$\mathrm{Hg}(3)$	$1 \times$	$3.130(3)$	$\mathrm{Cs}(1) 1 \times$	3.793(4)
$\mathrm{Cs}(1)$	$1 \times$	3.773(4)	$\mathrm{Cs}(1) 1 \times$	4.074(4)
$\mathrm{Cs}(1)$	$1 \times$	3.861(4)	$\mathrm{Hg}(4)-\mathrm{Hg}(3) 8 \times$	3.254(3)
$\mathrm{Cs}(1)$	$1 \times$	3.914(3)	$\mathrm{Cs}(1) 4 \times$	4.091(4)
$\mathrm{Cs}(2)$	$1 \times$	4.052(2)	$\mathrm{Cs}(1)-\mathrm{Hg}(2) \quad 2 \times$	3.678(3)
$\mathrm{Cs}(1)$	$1 \times$	$4.147(5)$	$\operatorname{Hg}(1) \quad 2 \times$	$3.773(4)$
$\mathrm{Hg}(2)-\mathrm{Hg}(1)$	$4 \times$	2.998 (2)	$\operatorname{Hg}(3) 2 \times$	3.783(4)
$\mathrm{Hg}(3)$	$4 \times$	3.991(2)	$\operatorname{Hg}(3) 2 \times$	3.793(4)
$\mathrm{Cs}(1)$	$4 \times$	$3.678(3)$	$\operatorname{Hg}(1) \quad 2 \times$	3.861(4)
$\mathrm{Hg}(3)-\mathrm{Hg}(1)$	$1 \times$	3.023(3)	$\operatorname{Hg}(1) 2 \times$	3.914(3)
Hg(1)	$1 \times$	3.075(3)	$\mathrm{Cs}(2)-\mathrm{Hg}(3)$	
			$8 \times$	3.785(2)
$\mathrm{Hg}(1)$	$1 \times$	3.130(3)	$\operatorname{Hg}(1) 4 \times$	4.052(2)
$\mathrm{Hg}(3)$	$2 \times$	3.172(3)		
$\mathrm{K}_{7} \mathrm{Hg}_{31}$				
$\mathrm{Hg}(1)-\mathrm{Hg}(1)$		2.92(2)	K(1) $2 \times$	3.557(4)
$\mathrm{Hg}(5)$	$3 \times$	2.934 (8)	$\mathrm{Hg}(3)-\mathrm{Hg}(3) \quad 2 \times$	2.92(1)
K(3)	$3 \times$	3.457(4)	$\mathrm{Hg}(2) 2 \times$	3.018(9)
K(1)		3.643(10)	$\operatorname{Hg}(5) 4 \times$	3.241(5)
$\mathrm{Hg}(2)-\mathrm{Hg}(3)$	$2 \times$	3.018(9)	K(2) $2 \times$	3.62 (5)
$\mathrm{Hg}(5)$	$4 \times$	3.155(4)	K(1) $2 \times$	4.009(6)
$\mathrm{Hg}(2)$		3.37(2)	$\mathrm{Hg}(4)-\mathrm{Hg}(4) \quad 2 \times$	1.98(2)
K(3)		3.419(8)	$\operatorname{Hg}(5) 2 \times$	2.80(1)
$\mathrm{Hg}(4)$	$2 \times$	3.42(4)		
K(2)	$2 \times$	3.56(7)		
K(3)	$2 \times$	3.84(2)		
$\mathrm{Hg}(5)-\mathrm{Hg}(4)$		2.80(1)		
$\mathrm{Hg}(2)$	$2 \times$	3.155(4)		
$\mathrm{Hg}(3)$	$2 \times$	$3.241(5)$		
$\mathrm{Hg}(5)$	$2 \times$	3.474(8)		
K(2)		3.53(2)		
K(3)	$2 \times$	3.804(4)		
K(1)		$3.907(7)$		

FIG. 5. Part of the infinite chain in $A_{7} \mathrm{Hg}_{31}$. The hexagonal openings of the layers formed by fused 20 -atoms polyhedra have the geometry of double drums with two alkali atoms close to the outer faces. These are connected to hexagons of atoms Hg 4 . Since the latter are 50% occupied they are more correctly described as triangles.

ACKNOWLEDGMENTS

We thank the donors of The Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

REFERENCES

1. (a) N. S. Kurnakow, Z. Anorg. Chem. 23, 441 (1900); (b) A. Schüller, Z. Anorg. Chem. 40, 385 (1904); (c) N. S. Kurnakow and G. J. Zukowsky, Z. Anorg. Chem. 52, 416 (1907); (d) E. Zintl and A. Schneider, Ztschr. Elektrochem. 41, 771 (1935).
2. (a) H. J. Deiserot, Prog. Solid State Chem. 25, 73 (1997); (b) E. Biehl and H. J. Deiseroth, Z. Anorg. Allg. Chem. 625, 389 (1999); (c) E. Biehl and H. J. Deiseroth, Z. Anorg. Allg. Chem. 625, 1073 (1999); (d) E. Biehl and H. J. Deiseroth, Z. Anorg. Allg. Chem. 625, 1337 (1999).
3. (a) V. Queneau and S. C. Sevov, Angew. Chem. Int. Ed. Engl. 36, 1754 (1997); (b) E. Todorov and S. C. Sevov, J. Am. Chem. Soc. 119, 2869 (1997); (c) E. Todorov and S. C. Sevov, Inorg. Chem. 36, 4298 (1997); (d) E. Todorov and S. C. Sevov, Angew. Chem. Int. Ed. Engl. 38, 1775 (1999);
4. E. Todorov and S. C. Sevov, Inorg. Chem. 37, 6341 (1998).
5. P. Villars and L. D. Calvert, "Pearson's Handbook of Crystallographic Data for Intermetallic Phases," 2nd ed. ASM International, Metals Park, OH, 1991.
6. L. Pauling and R. E. Marsh, Proc. Nat. Acad. Sci. 36, 112 (1952).
7. A. F. Wells, "Structural Inorganic Chemistry," 5th ed., p. 1302. Oxford Univ. Press, The Thetford Press, Ltd., Thetford, Norfolk, 1984.
8. K. J. Nordell and G. J. Miller, Angew. Chem. Int. Ed. Engl. 36, 2008 (1997).
9. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976); the ionic radii are given for C.N. $=6$
10. G. Bruzzone and M. L. Fornasini, Acta Crystallogr. Sect. B 30, 317 (1974).
11. (a) D. M. Flot, M. Tillard-Charbonnel, and C. Belin, J. Am. Chem. Soc. 118, 5229 (1996); (b) S. C. Sevov and J. D. Corbett, unpublished research.

[^0]: ${ }^{1}$ To whom correspondence should be addesssed. E-mail: ssevov@ nd.edu.

