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Abstract 

The even-even Cd nuclei near neutron number N = 66 are indicative of the presence of two 
rather distinct families of excitations: anharmonic quadrupole vibrations and more deformed in- 
truder particle-hole excitations. We discuss these excitations as mainly coexisting families of states 
forming the global structure of these nuclei. Then, we investigate how local large perturbations 
can cause strong mixing between the two families. The coupling is studied in detail and a partic- 
ular set of selection rules governing the mixing leads to the introduction of a new basis in order 
to discuss the interaction between vibrational and intruder excitations. Numerical applications are 
carded out for H2'H4Cd. 

1. Introduction 

In the study of  nuclear structure properties in nuclei with just a few protons (neu- 
trons) away from a closed shell configuration but many valence neutrons (protons) ,  one 
encounters the characteristics o f  anharmonic quadrupole vibrational excitations mainly. 

It has been shown though that in the Z = 50 mass region (Cd, Te . . . .  ) [1-11]  and, 

similarly in the Z = 82 mass region ( [ 10] and references therein) a number of  extra 
states below the pair gap breaking energy do appear in  a systematic way which cannot 
easily be accommodated in the vibrational picture. 

It is precisely the mass regions where a systematic observation of  particle-hole ( p - h )  
excitations has been made in the odd-mass nuclei adjacent to the Z -- 50 (In, Sb) 
and Z = 82 (TI, Bi) nuclei [ 11]. These p - h  excitations can give rise to deformed 
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Hg. 1. The variation of the lowest 2p-2h 0 + intruder configuration over a given mass region, and this as 
a function of the number of valence nucleons (i.e. neutron numbers for a proton 2p-2h excitation) [10]. 
Both the pairing energy correction (AEpair) as well as the relative binding energy gain due to quadmpole 
proton-neutron interactions are drawn, albeit in a schematic way. The specific particle configurations are 
drawn as inserts. 

states coexisting with the regular, low-lying excitations. In that spirit, it is quite a small 

step to suggest the appearance of  similar p -h  excitations in the even-even nuclei at or 

near to the closed shells. The most dramatic examples of  possible 2p-2h excitations 

across a major shell closure have been seen in the even-even Pb nuclei [ 12,13] and in 

the Pb region (Hg, Pt, Po . . . .  ). Also the Sn region (Sn nuclei [14] and nearby Cd 

nuclei) are good examples where both vibrational and intruder states do appear. The 

fact that these intruder p -h  excitations can compete in excitation energy with the more 

regular excitations is mainly due to the large binding energy gain realized within the 
intruder configuration (2p-2h)  originating from the proton-neutron interactions. This 

behavior can be rather easily derived when using a quadrupole proton-neutron force and 
shows maximal binding energy gain at the mid-sheU configurations (for Sn, Cd, Te near 

N = 66; for Hg, Pb, Po near N --- 104 . . . .  ). In Fig. 1 a schematic illustration of  the 

mass dependence for the lowest 0 + intruder state is shown. 
The question whether no other explanations or descriptions can equally well account 

for these extra excitations, of  course, comes up. There have been attempts made to 
explain the extra states as resulting from very large anharmonicities in the vibrational 

model, bringing states from higher phonon multiplets down in energy [4-6 ,15-17] .  
Given the fact that most B(E2)  values seem to fulfill the harmonic vibrational intensity 
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and selection rules has been a guide in that respect. There is, however, a problem since 
large energy anharmonicities will mostly lead to large anharmonicities in the B(E2) 
values too, and the aim is an understanding of both the energies and E2 decay rates 
within a single framework and thus for all states below the pair gap. 

Still other explanations have invoked the idea that in coupling the proton and neu- 
tron excitations, modes where the different charge components are coupled in a non- 
symmetric way (mixed-symmetry states within the IBM-formalism [ 18] ) might explain 
the extra low-lying 2 + states [7,8]. Even though this approach gives some success for 
the particular extra 2 + state, the low-lying 0 + extra state is missing in the description 
and the energy dependence of the mixed-symmetry states is difficult to understand [ 19]. 

It seems, looking to the large systematic basis on the appearance of intruder p-h 
bands near closed shells, that only the picture including shape coexistence related to the 
extra pairs being created relative to the normal states can give a rather consistent and 
general framework in order to describe the extra states near closed shells [ 19]. 

In recent years, the Cd isotopes have received particular interest in testing the above 
ideas. A variety of techniques encompassing ~,-ray spectroscopy, inelastic scattering 
studies, transfer reactions . . . .  have allowed to establish level schemes as complete as 
possible for a large chain of Cd nuclei [ 1-8,20-22] with rather compelling evidence 
for 0 + intruder states near the N = 66 mid-shell region and, in ll°A12Cd, with intruder 
bands extending to rather high excitation energy and high-spin values. 

The aim of the present paper is (i) to show that a global structure is present in 
the Cd nuclei comprising both the set of anharmonic quadrupole vibrational excitations 
and the intruder bands (Section 2.1) and, (ii) to indicate evidence that only very local 
perturbations will mix the two families at well defined spin values. The precise meaning 
of the terms "global" and "local" are defined in Ref. [ 19]. We investigate a new basis 
which incorporates most of the effects due to the presence of rather selective mixing 
related to underlying similarities (a common 0(5)  subgroup in the IBM group chains) 
[ 23 ] between the vibrational and intruder excitations. 

The formulation makes use of the IBM algebraic structure [18] where 2p-2h ex- 
citations can be considered as two extra bosons. The configuration mixing picture, as 
worked out originally by Duval and Barrett, is thereby used [24]. Even though a number 
of numerical studies of intruder excitations concentrating on the Cd nuclei have been 
carried out [3,25-30], we shall concentrate on (i) the underlying mechanism causing 
the coupling between the vibrational and intruder bands to be so selective [23,19], and, 
(ii) the possibility of having intruder analog multiplets surviving to a large extent in 
these Cd nuclei [31] making up for the global, rather simple structure of these Cd 
nuclei. 

We also point out that a possibility exists to bridge the gap between on one hand 

calculations using the IBM configuration mixing and starting from a basis that implies 
strong mixing for certain states (0 + states) and, on the other hand, attempts to describe 
all observed E2 properties using rather an unmixed picture of anharmonic quadrupole 
vibrations serving as the physical basis. 



4 K. Heyde et aL/Nuclear Physics A 586 (1995) 1-19 

2. Coexistence in the even~ven Cd nudei: global properties and local 
perturbations 

In the present section, we try to describe the main features of all excited states up to 
the energy where the multitude of more complex broken-pair shell-model configurations 
appear in the spectra. Even in this region, a number of collective bands can be observed 
to rather high spin values [ 1-3]. 

We first concentrate on the main structures: the Cd nuclei are still approximately 
behaving like anharmonic quadrupole vibrators, at first instance. The presence of a 
number of extra states near the two-pbonon energy, and a band associated with a more 
deformed, intrinsic structure is also quite clear [ 1-8]. These two features: anharmonic 
quadrupole vibrational excitations completed with intruder bands makes up for the 
global nuclear structure properties. Whenever states of these different families come 
close together, large mixing of the wave functions should inevitably show up: these 
perturbations will result in modifications in the electromagnetic decay properties of the 
independent subsystems [ 32]. We call these the local perturbations, following Ref. [ 19]. 

It is our aim to describe both global and local properties as correct as possible. 

2.1. Global symmetry properties 

One has observed that a description of all low-lying levels in the even-even Cd nuclei 
making use of anharmonic quadrupole vibrational excitations is not easily possible. 
Introduction of various anharmonic corrections to the purely harmonic vibrator can 
stretch the region of validity of the basic quadrupole vibrational picture but it remains 
rather difficult to describe both (i) the precise energy of the various members and 
(ii) the E2 transition rates [5,6,15-17]. 

Making use of the U(5) limit of the interacting boson model [ 18] and starting from 
the hamiltonian in this chain, which results into the energy expression 

E(nd,V,L) = end + omd(nd + 4 )  + flV(V + 3) + y L ( L  + 1), (1) 

where ~, a, fl and y denote the strengths for the various Casimir operators (linear U(5), 
quadratic U(5),  quadratic 0 (5 )  and quadratic O(3), respectively); fits have been made 
for various even--even Cd nuclei (see Fig. 2) [3,19,33,34]. Even though these fits give 
a rather good description of a large part of the low-lying states, a large number of levels 
are still missing to complete the global structure as observed in the even-even Cd nuclei. 

The additionally observed low-lying states could be interpreted as intruder excitations, 
in the light of the observation of low-lying intruder excitations appearing systematically 
in both odd-mass In (1/2 +, 3/2 + . . . .  ); Sb (9/2 +, 11/2 + . . . .  ) [11] as well as in the 
even-even Sn nuclei (0 +, 2 +, 4 + . . . .  band) [ 10] preferentially near the neutron mid- 
shell N = 66 position. Microscopically, they are understood to be 4h-2p excitations that 
acquire a particular low energy through the increased proton-neutron binding energy, 
relative to the regular 2h configurations. This idea has been developed in a systematic 
way and has been amply illustrated to persist experimentally in many more mass re- 
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Fig. 2. Comparison between the theoretical U(5) description of  excitations in llO, n2AI4Cd with the anharmonic 
quadrupole vibrational part of  the experimental spectrum [ 19]. 

gions [ 10]. In completing the family of anharmonic quadmpole vibrational excitations 
with the intruder excitations, one might well reach a global description in the even-even 
Cd nuclei. 

Following the suggestion of a possible classification of the intruder bands as members 
of intruder analog multiplets [ 31 ] where particle and hole bosons are considered as spin 
+1 /2  and - 1 / 2  projections of intruder spin 1/2 objects, a connection between 

nh ~ ( n - 2 ) h - 2 p  ~ ( n - 4 ) h - 4 p  +- , . . .np  (2) 

configurations could be made. In such a description the intruder 4h-2p states in the 
even-even Cd nuclei would be members of a I = 3/2 multiplet (with Iz = - 1 / 2 )  and 
thus should resemble the ground-state bands in the I = 3/2, I z = - 3 / 2  Ru even-even 
nuclei [3,31,34]. That this is rather well the case is shown in Fig. 3. As the Ru isotopes 
are 3,-unstable nuclei, the intruder band should be approximately described by the 0 ( 6 )  
limit of the IBM [ 18], with corresponding energy formula 

E(o', 7", L) = do ' (o-  + 4) +/3'z(7" + 3) + 3 , 'L (L  + 1),  (3) 

or, alternatively, 

E ( t r ,  I", L )  = ot" ( N - o') ( N + o" + 4) + fl"~-(~- + 3) + 3 , ' L ( L  + 1),  (4) 

where d ,  /3 ~, 3,~ are the strengths of the quadratic 0 ( 6 ) ,  0 ( 5 )  and 0 ( 3 )  Casimir 
operators, respectively. The a" , /3" ,  y"  strengths are related to a ~, fl~, 3,' as discussed 
e.g. by Casten and Warner [35]. 
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Fig. 3. Comparison of the intruder multiplet structure (2p-4h configuration) in the 110"112'114Cd nuclei 
(normalized to the lowest 0 + intruder state) with the corresponding ground-state bands (6 hole configurations) 
in the even-even l°6'l°s'll°Ru nuclei [ 19]. 

Putting the formulae 1 and 3 (or 4) together, one obtains a rather good description 

of  all states and can make up for a global picture to discuss the even-even Cd nuclei. 

2.2. Mixing: strong versus weak-mixing 

It is clear that the two families (U(5)-like and O(6)-like or, anharmonic quadrupole 
vibrations and the intruder bands) will most probably mix whenever equal J~ states 
come close together. It was shown, using a method developed by Duval and Barrett 
[24] ,  how such an intruder band can interact with the regular bands. Starting from 

configuration mixing calculations taking into account both the two-hole (/9~r -- 1) and 
4h-2p  (N,r --- 3) boson states, as well as the relative energy difference caused by the 

energy needed to create an additional 2p-2h  pair, rather detailed calculations in the 

Cd region and other mass regions could be carried out [25-30] .  A general mixing 
hamiltonian, determined within the IBM formalism, connects the N to N + 2 model 
space by creating two more pairs (a  2p-2h  excitation). In the sd-boson model, one 

could either do this creating two more s bosons or two more d bosons, so the coupling 

hamiltonian reads l 

nmix = a (s+ s + q- h.c.) (0) q- fl (d+ d + -t- h.c.) (°) • (5) 

I Here, no disfmction between particle and hole-like bosons nor between proton and neutron bosons is made. 
So, one should in the more general case use s+p, d+ z and s+o, d+p (p: particle, h: hole; p = 9, J, proton, 
neutron) bosons. This distinction can be made in making the ~ntruder analog multiplet structure appear more 
precisely [31]. 
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Fig. 4. The coupling between a U(5) and intruder 0 (6 )  spectrum (scale arbitrary but drawn after the typical 
situation as observed in the even--even Cd nuclei). The quantum numbers na (in the U(5) limit) and ¢ (for 
the 0 (6 )  limit) are denoted. Forbidden matrix elements are denoted by the dotted lines [23,19]. 

In terms of the intruder spin this means that IAII = 1 couplings are possible and, using 
the sd-boson model structure that And = 0, -t-2 coupling terms will result. 

The detailed, numerical studies of the mixing between the N and N + 2 configuration 
spaces carried out within the proton-neutron IBM (IBM-2) leads to the introduction of 
quite some extra parameters [25-30]. Their determination is constrained by the simul- 
taneous description of many isotopes [26,30] and by microscopic arguments [30,32]. 
Here, we first look to the more general features the above coupling hamiltonian can 
create. To highlight the coupling effects, we use the U(5) -O(6)  model [3], which 
allows an analytic treatment of shape coexistence [33]. 

2.2.1. Mixing the pure U(5) and 0(6) symmetries 
In Fig. 4 we indicate in a schematic way (adjusted to the more realistic cases of 

lJ°'ll2'lZ4Cd) the relative positions of the lowest U(5) and 0 ( 6 )  multiplet members. 
Even though, near the two-phonon 0 +, 2 +, 4 + nd= 2 states the lowest 0 (6 )  0 +, 2 + 
states show up, the coupling hamiltonian imposes certain selection criteria [3,19], which 
are related to the common 0 ( 5 )  subgroup [23]. 

Trivially, the mixing hamiltonian only connects states with And = 0, q-2. This selection 
rule is, however, not the only one that affects the mixing. To illustrate this, we can 
consider the intruder states to be described by the 0 ( 6 )  symmetry. Then, one can 
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expand a pure 0 (6 )  state, characterized by given N + 2, tr, ~-, L values, into the U(5) 
basis, i.e. 

I [ N +  2], o', ~', L ) =  ~ "  a N+2 '~ ' r ' - °~  ,d I [ N + 2 ]  , no,v, L ) ,  (6) 

where N refers to the number of bosons in the normal configuration and the sum over 
nd goes as: 

nd = r , r +  2, r + 4  . . . .  ~< N + 2 .  (7) 

This decomposition, studied in detail in Refs. [23,19], forbids any coupling of U(5) 
and 0 (6 )  states, even when they are degenerate, if 

~" - -  n d =  odd. (8) 

This condition (8) allows strong mixing between 0 + and 0~ states but no mixing 
between 2~- and 2~- states. This behavior was very recently observed in ll2Cd by 
Hertenberger et al. [36] in (p, pJ) and (d,d')  experiments. The mixing conditions can 
be defined in a more succinct way by noting that the mixing hamiltonian (5) can be 
rewritten as an 0 (5 )  scalar operator implying the even more stringent condition v = r 
[ 19]. Thus one obtains the selection rules on the mixing by 

AL = 0; A n d  = 0, +2; v = ~', (9) 

if the intruder states are described by 0(6)  and the regular states by U(5). In Fig. 4 
the states which, according to the above selection rules, can mix are linked by a thick 
arrow, forbidden couplings with dotted lines. One has to keep in mind that coupling 
matrix elements are quite small and 100 keV is almost an upper limit. In the light of 
typical energy separations e.g. for the 4+ and 4 + states, 6 + and 6~- states, even allowed 
coupling terms will give rise to rather small mixing effects. 

It is this selection mechanism which makes that the global structure remains intact 
+ + up to rather high spin states, and that only a few cases (02 -03 as the most dominant 

coupling) give rise to locally strong deviations from coexisting band structures. 

2.2.2. The choice of a basis 
In practice, when trying to describe the even-even Cd nuclei, one goes beyond the 

U(5) and 0 (6 )  basis states. Realistic IBM-2 hamiltonians, as discussed before [2,10,25- 
27,29,30,32,34,36], however do preserve in part the selective mixing when inspecting 
the obtained wave functions. 

Knowing that the major coupling for the region Ex~l.5 MeV is mainly situated 
+ + in the 02 -03 channel which has as consequence an important modification of the E2 

transition rates, we propose to take into account this observation by carrying out a 
two-step diagonalization of the mixing hamiltonian: 

(i) The realistic model spaces describing the regular (proton two-hole configurations) 
and the intruder (proton four-hole two-particle configurations) excitations are ob- 
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tained according to the Duval, Barrett method [24] and denoted by [j~r;/9~r = 1) 
and IJT;/9~r = 3), respectively. 

(ii) Considering the major effects of Hmix, Eq. (5),  as outlined in the analytic 0 ( 6 ) -  
U(5)  coupling model [23,34], to be preserved, a strong coupling between the 0~- 
and 0~- states and only weak coupling between the 2~--2~- and 4 +-4~- levels occur. 
Then, the matrix U carrying out the transformation from the basis [JT;/9~r = 1), 
IJ~;/9~r = 3) to the actual eigenstates can be split into a part U is) (s: strong 
mixing, following the O(6 ) -U(5 )  coupling model) followed by a part U <w) (w: 
weak mixing part): 

U = U ( w ) u  (s) . ( 10 )  

The transformation 

U(S)( IJ~ i ; /9 , r - -1)  ) 
IJT;;/9." 3) ' (11) 

results into the intermediate (called new) basis as approximate eigenstates to the 
full problem and where the remaining, more detailed mixing effects are diagonal- 
ized by U (w). 

The matrix U (s) is determined by inspecting the major effects caused by Hmix on 
the final wave functions for a given Cd nucleus. Thus, the structure and amplitudes can 
change somewhat in proceeding through the whole series of even-even Cd nuclei in the 
mid-shell (around N = 66) region. For ll4Cd we have chosen the new basis as 

l0 +) = l0 + ;/9." = 1), 

1 1 
10+) = ~ 10+ ;/9~ = 1) + ~ 10i ~ ;/9*" = 3) ,  

1 1 
10~) = ~ 10+ ;/9*" = l) - ~ IOi ~ ;/9." = 3), 

12~-) = ~ - ,2 12+ ;/9*" = 1) + el21+ ;/9,~ = 3),  

12 +) = v12+ ;/9." = 1 ) +  812~ ;/9,r =35 ,  

12 7) = -812+ ;/9,~ = 1) + r12~ ;/9,, = 3),  

14~) = y'14i~ ;/9." = 1) + 8'14~- ;/9,~ = 3), 

[4+) = -8'14~ - ;/9,~ = 1) + ~/14~- ;/9,~ = 3), (12) 

with T = T' = 0.95, 8 = 8' = 0.30 and e = -0.12. The small, but non-zero value of 
e already takes into account in the new basis some small intruder state mixing effects 
in the 2~" state (mainly one-quadrupole phonon 19,, = 1 state) which will prove to be 
important in determining the effective E2 operator acting in this new basis. We also 
allow by T and 8 a slight perturbation compared to the more stringent U ( 5 ) - O ( 6 )  
model in which the 12+) and 12~-) do not mix [23]. 

This intermediate basis should approximate the experimental situation already quite 
well and will determine new effective E2 matrix dements through the relation 
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Table 1 
E2 reduced matrix e lements  in the unperturbed "vibrational" (/9,r = 1) and "intruder" (/V~r = 3) basis 
(units  e . fm 2) 

/~/gr = 1 /~/~r = 3 

(21+11M(E2)110~ +) -70  
(2+IIM(E2) 110~) -33 
(2+IIM(E2)112+) -37 
(2+IIM(E2)[[0 +) --28 
(2+[[M(E2)I[2 +) -83 
(2+11M(E2)[12 +) 19 
(2+IIM(E2)II4 +) -120 
(2+[IM(E2) 114 + ) -20 
{4+[IM(E2) 1141 + ) -60  

(2~IIM(E2)II0~) 126 
(2+ItM(E2)II2 +) 90 
(2+IIM(E2)II 4+) 200 
(4+[IM(E2)[I4 +) 80 

<Jfl IM(E2)I~) = ~ U(S> (/jr; j&) U(S) (~; k&) (17; &IIM(E2)IIJ~; ~),  
j ,~-  

(13) 

where the U (s) elements are nothing but the coefficients as given by the wave 

functions of Eq. (12). From the knowledge of the elementary matrix elements 

(J7 ;/V'~ = IIIM(E2)IIJ~;N'~ = 1) and the analogous matrix dements but now with 
/9,r = 3, one gets simple expressions. In Table 1, we present these elementary "uncou- 
pled" N~r = 1 and/9~ = 3 matrix elements (in units e.fm2). The values are determined 
according to the IBM-2 calculation of Ref. [30] for n4Cd using all the parameters as 

fixed in that study. In Table 2, we then show for the various transitions, both the "un- 
coupled" value, the contributions to Eq. (13) from the/V,r = 1 part (called vibrational), 
from the /~/~. = 3 part (intruder) as well as the total value (in units e.fm2). Thereby, 
new effective charges are defined and it is interesting to see what the major changes 
induced to the "uncoupled" scheme will be. We illustrate these results in Fig. 5. At first 

glance, almost no changes occur except for 
(i) a coupling of the otherwise uncoupled 2 + state, decaying to the lower-lying 2 +, 

(ii) the strong 0~- ~ 2~- E2 transition. 
In this intermediate basis, one has lost the pure interpretation of a two-phonon quad- 

rupole 0 + state and an intruder 0 + state through the perfect l /v/2,  1/x/~ linear com- 
bination. Almost the same linear combination was obtained with the coupling model in 
Ref. [34]. This intermediate basis comes already quite close to explaining the experi- 
mental situation. Therefore, the remaining modifications (in general) to E2 transitions 
and energy shifts will be rather small. In Table 2 we also give the experimental E2 ma- 
trix elements as derived by Fahlander et al. [6]. A comparison of these matrix elements 
and the newly derived, effective E2 matrix dements is interesting. One observes that 

(i) if a certain E2 matrix dement arises from a transition allowed in the uncoupled 
picture (column 2 of Table 2), the final theoretical value (column 5) never deviates 
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Table 2 
The results for the effective F_,2 matrix elements after applying that part of the diagonalization, called U (s) 
(Eq. (11)).  Both the uncoupled, the total vibrational (/Vcr = 1) and intruder (/V~r = 3) parts to the E2 matrix 
element are given. The total value is given (all in units e.fm 2) as well as the E2 matrix elements deduced 
from experiment by Fahlander et al. [6] (column Exp.). The present table is used to construct the right-hand 
part in Fig. 5 

Jff --* J~ Uncoupled Vibrational Intruder Total Exp. a 

2 + --~ 0~- - 7 0 ( V )  - 7 0  0 - 7 0  71.4 

0~- --* 2 + 0 -23  -11  - 3 4  30.0 

2 + --+ 0 + 0 0 0 0 9.1 

--~ 2 + - 8 3 ( V )  - 79  - 3  - 8 2  60.6 b 

--* 02+ 0 - 1 9  31 12 -17.0 

4 + --~ 21+ - lEO(V) -114  - 7  -121 135.0 

--+ 22+ - 2 0 ( V )  - 18  18 0 -35.0 

0~" --* 2 + - 3 3 ( V )  -23  11 --12 0.30 

-~ 22+ -28 (V)  - 18  --31 --49 67.0 b 

2~- --+ 0 + 0 0 0 0 7.30 

2 + 0 25 - 1 0  15 2.50 

0 + 126(I) 6 84 90 103.0 b 

4 + 0 6 57 63 86.0 b 

2 + 0 5 - 2 6  -21 73.0 b 

0 + 0 6 - 8 4  -78  33.0 

4 + ~ 2 + 0 36 -23  13 11.0 

22+ 0 6 57 63 97.0 

--* 2 + 200(I) 2 -180  --178 185.0 

4 + 0 17 23 40 61.0 

2 + ~ 2 + - 3 7 ( V )  - 37  1 - 3 6  -36.0 

2+ ~ 22+ 19(V) 17 1 18 92.0 

2 + ---+ 2 + 90(I) 2 81 83 29.0 

4+ -* 41 + - 6 0 ( V )  - 5 4  7 - 4 7  -95  

a Ref. [6] Fahlander et al. data. 
b These values are rescaled from Ref. [6] using the branching ratios determined and discussed in Ref. [5]. 

( i i )  

m u c h  f r o m  the  u n c o u p l e d  va lue  and  comes  qu i te  c lose  to the  expe r imen ta l  ma t r ix  

e l e m e n t s  ( c o l u m n  6 ) ,  except  for  the  4 + ~ 2~- and  0~- ~ 2 + t rans i t ions .  In 

b o t h  cases,  s t rong  des t ruc t ive  in te r fe rence  be tween  the  v ib ra t iona l  and  in t rude r  

pa r t  shows  up  and  even  m i n o r  mod i f i ca t ions  o f  the  smal l  fac tors  8 and  e can  

c h a n g e  these  va lues  in  a dec is ive  way ( c h a n g i n g  e f rom - 0 . 1 2  to - 0 . 2 5  w o u l d  

g ive  a l m o s t  exact  cance l l a t i on  for  the  0~- ~ 2~-, E2  mat r ix  e l e m e n t ) .  So, the  

i n t e r m e d i a t e  or  new bas is  c a n n o t  p r o d u c e  stable n u m b e r s  for  those  t rans i t ions .  

for  those  E2  t r ans i t i ons  tha t  are f o r b i d d e n  in the  u n c o u p l e d  bas is  ( v a l u e  o f  0 

in  c o l u m n  2 ) ,  t he  new bas is  resu l t s  in  a lmos t  all cases ( 0  + --~ 2+;  2 + ~ 0~'; 

2 + _-+ 2 + , a +  ~ +  a + .  ~, ,~2 , " 3 ,  4+ --+ 2+,  2~-, 4 + )  in  a se r ious  i m p r o v e m e n t  and  app roaches  
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a~ b) 
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Fig. 5. (a) The quadrupole vibrational (/V= = 1) and intruder (~/= = 3) B(E2) values in ll4Cd for 
an uncoupled situation. The widths of the arrows have been normalized to the B(E2; 2 + ~ 0 +) value 
( ~ 1000 e2fm 'l ). Values between brackets denote the diagonal matrix elements ( JTII M(r~) II ~)  for the 2 + 
and 4 + states also in units e.fm a. Forbidden transitions are indicated (dashed lines). (b) The same as for 
(a) but now using the wave functions obtained using the basis (Eq. (12))  after the transformation U (s). The 
new, effective B(E2) values and F.,2 diagonal matrix elements ate drawn with the convention described under 
(a). 

the experimental E2 matrix elements. Here, the action of the remaining weak- 
mixing transformation U (w) improves the comparison of the theoretical E2 matrix 
elements with the numbers of Fahlander et al. [6]. 

At this point, we like to comment on the studies by Casten et al. [5] and Fahlander 
et al. [6] trying, in part, to constrain the structure of Cd nuclei to that of an anharmonic 
quadrupole vibrator. It is indeed very close to reality that, looking to E2 transitions, 
one might make the choice of a "physical" basis that relates to a strongly perturbed 
quadrupole vibrator in the energies, keeping the E2 rates rather well intact according to 
the original E2 vibrational intensity and selection rules. One could say that Casten et al. 
[5] and Fahlander et al. [6] have somehow "chosen" the intermediate basis (see our 
Eqs. (12) ) to work with. This becomes even more convincing when comparing in detail 
the E2 matrix elements as deduced by Fahlander et al. [6] with the effective E2 matrix 
elements as derived in the new, intermediate basis (see our Eqs. (12)). It seems that 
the selective O(6)-U(5)  mixing mechanism modifies the original, uncoupled basis of 
IJ~" ; N= = 1) and I J7 ;~/= = 3) into a new basis that approaches the observed situation 
already to a good degree. 

So, the resulting outcome is overall a global structure obtained by having the quad- 
rupole anharrnonic spectrum (mainly U(5))  and the intruder bands (mainly 0(6)  
symmetry) put together with, a particularly strong local perturbation at the level of the 
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Fig. 6. (a)  Same as in Fig. 5a but now for the full diagonalization in n4Cd. (b)  Same as in Fig. 5b but now 
presenting the experimental values in ll4Cd. 

A/~r = 1, 0~- two-phonon and A/,r = 3, 0 + lowest intruder state. 

2.2.3. Detailed results for 114Cd 

In order to carry out the full diagonalization one still needs the part U (w) that takes 
care of the remaining mixing parts, and so a weak-mixing in the new, intermediate basis 
inevitably results. The part U (w) is given by the expression 

U (w) = U U  - l ( s )  , (14) 

and has been derived for the case of ll4Cd [30]. For the detailed calculation of llaCd, 

all parameters (hamiltonian, E2 boson effective charges . . . .  ) are identical with the ones 
used in Ref. [30] with the choice e(N~ = 3) = 0.32 (see Fig. 6). Before discussing the 
final E2 pattern (and energies) we give, in Table 3, parts of the U (w) matrices for the 
0 + and 2 + states. Here, it immediately becomes clear that the maximal mixing between 
the ]0~-, ~',r = I) (quadrupole two-phonon state) and the 10~-, tV~r = 3) (lowest 0 + 
intruder state) has been transformed away, indicating only very weak mixing with the 
0 + state. For the 2 + state, the lowest part of U Cw) shows the same effects and even the 
small mixing amplitude (~ -- 0.3) is transformed away in the final step to almost zero 
(see the non-diagonal (2,3) and (3,2) dements). 

The detailed results concerning B(E2) values are presented in Table 4 where besides 
the data (column 2), the B(E2) values for both the unmixed ( a  =/~ = 0; column 3) 
and optimally mixed ( a  =/~ = 0.08, column 4) as well as the values obtained by DGl~ze 
et al. [2] for the same nucleus ]14Cd, are presented. In order to give an impression on 
the sensitivity of the B(E2) values to the mixing strengths a and /~ (see Eq. (5) ) ,  
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Table 3 

(a) The two-step procedure with (i) U (s) and the corresponding basis in the upper part and, (ii) the 
weak-mixing transformation matrix U (w) now acting on the new basis of 0 + states. Only the lower 
3 rows and columns are given here. (b) Same caption as part (a) but now for the 2 + level 

1 0 0 

1 1 

0 . . . . .  

0.9963 0.0543 -0 .0459 . . .  

-0 .0578 0.9925 -0 .0817 . . .  

-0 .0405 -0 .0826  -0 .9896 . . .  

(a) 

l0 + ; ~/¢r : 1) 

102+; ~t~r = 1) 

10~" ; r~.  : 3> 

Io~> 
io~) 
io+) 

1 0 - 0 . 1 2  

0 0.95 0.30 

0 - 0 . 3 0  0.95 

2 2 ; 

0.997 0.0424 0.1124 

0.030 0.9762 -0 .0292 

-0 .026  0.0534 0.9740 

. . °  

(b) 

12~+; s~.  : 1) 
12~ + ; ~,~ = 3) 

12~) 
12; ~) 

we have studied the variation of a large number of E2 transitions and illustrated this in 
Figs. 7a, b and c. As a general conclusion, it shows up that only minor changes result 
for a 10-15% variation of these coupling strengths. 

In comparing the results of Tables 2 and 4, it is clear that the calculation using 
the intermediate basis, determined via the transformation U (s), gives already (for the 
transitions that are allowed in either the vibrational or intruder uncoupled, original basis) 
the correct behavior. There is the clear need, though, to carry out the full calculations 
in order to get the more detailed description of the E2 decay properties. A few cases 
remain where, even in the more detailed study, deviations are quite big, e.g. the 0~- ~ 2 + 
transition which is, in the calculation of Dtl~ze [ 2] ,  rather well reproduced. As discussed 
before, those small B(E2) values result from destructive interference effects coming 
from the vibrational and intruder contributions ( - 2 3  and +11 e.fm 2 for the vibrational 
and intruder contributions, respectively, for the 0~- ~ 2 + E2 transition). Even tiny 
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Table 4 
Detailed (full diagonalization) B(E2;J 7 ---* J~) values (in e2fm 4 units) for ll4Cd. The data are com- 
pared with (i)  the unperturbed B(F_,2) values (or = ~8 = 0) and with the result of the full diagonalization 
(U = U~w)U (s)) ( a  = /3  = 0.08). The values from D616ze et al. [2] [D] are also presented, for comparison 

"/7 "-' J~  Expt. a = B = 0 a = B = 0.08 [D] 

2 ~ - - * 0 ~  1020 955 971 1152 

0 ~ - - ~ 2 ~  900 - 895 1394 

2~---~0~ 17 2.2 2.2 12 

--~2¢ 724 1362 1373 1652 

- - , 0  F 60 - 14 116 

4 ~ - - 4 2 ~  2020 1571 1623 1871 

--~2~ 136 41 3.7 22 

03 ~ 2~ 0.1 1091 314 0.6 

---~2~ 4476 762 1765 2452 

2~ ~ 0~ 11 - 0.0 0.46 

--*2~ 1.3 - 50 20 

---~0~ 2167 3216 2134 1925 

---~2~ 1133 - 439 487 

---~0~ 230 - 811 823 

---~4¢ 1533 - 604 770 

4~ --~ 2~ 13 - 6.7 7.1 

----~2~ 1053 564 1678 

- - ,2~  3785 4537 3420 642 

---,4~ 430 179 1031 

3~ ---~2~ 34-92 4.5 12 

---~2~ 1206-3200 1193 1707 

---~4~ 500-1400 410 656 

--~2~ 24-64 5.2 40 

---~4~ <(340-930)  761 104 

0~---~2~ 190-490 4 16 

--~2~ 1400-3700 278 1189 

23 <1 o.1 1o 
---~2~ <5.8 10 2 

--~0~ <280 68 74 

--~2~ <38 12 67 

--*0~ <240 1 1956 

- - -2~  <500 3335 1844 

6~-- '~4~ 3915 1825 2385 

6~--- -4~ 4245 2701 3590 
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Fig. 7. ( a ) - ( c )  Variation of a number of B(E2;J~/ ---* J~f) reduced E2 transition probabilities as a function 
of strengths ct, ~ in the mixing hamiitonian of Eq. (5). The B(E2) values marked with an asterisk ( , )  need 
to be multiplied by the statistical factor 5. 
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Fig. 8. The unmixed and experimental B(E2) values for ll2Cd [ 19]. Same conventions as described in Figs. 5 
and 6 are used. 

changes in the hamiltonians (the difference between the calculations of Refs. [30] and 
[2], columns 4 and 5) can induce drastic changes and give an idea of the sensitivity 

of the model. Moreover, we observe that these B(E2) values cannot be calculated in a 
s tab le  way using the present approach. Since in these situations, we are concentrating 
on very small B(E2) values, partly resulting from subtle interference effects, their exact 
reproduction is presently at the limit of applicability of the model. 

Very similar results are obtained in ll0'll2Cd and the unmixed and experimental 
situation are presented in Fig. 8 for ll2Cd, with mainly the same pattern as in ll4Cd, 

and as shown in recent studies [3,23,19,33], an even clearer presence of the 0 ( 5 )  
symmetry shows up in this nucleus. 

3. Conclusion 

Results of low-spin gamma-ray spectroscopy, augmented by more selective reactions 
have made available level schemes that are (almost) complete in the even-even Cd 
nuclei up to Ex "~ 2.5 MeV. Using both the energy spectra and the E2 transition rates, 
it has become possible to define the global structure in these nuclei as a combination of 
an anharmonic quadrupole vibrational spectrum (U(5)-like) and an intruder spectrum 
(more O(6)-like).  This picture gives a fairly consistent description of most phenomena. 
Here, it has been shown that the concept of intruder analog multiplets can be used for 
the even-even Cd nuclei. Even though locally, in particular near the position of the 
two-quadrupole phonon 0 +, 2 +, 4 + triplet, strong perturbations occur through mixing 
between the vibrational and intruder structures, the modification to the global structure 
remains moderate. A deeper insight in the coupling between the vibrational and intruder 
structure can be traced back to the analytical description of the U(5 ) -O(6 )  coupling 
model, as worked out in detail in Refs. [ 19,33 ]. Thus, shape or intruder state coexistence 
remains a valid picture to describe the even-even Cd-nuclei, in particular near the mid- 
shell N -- 66 neutron region. We also have pointed out that by including the strong 
0~- - 0~- coupling in an intermediate step, an intermediate basis can be constructed such 
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that the difference between 2-phonon and intruder 0 + states gets lost. This then gives 
rise to a very good new basis in order to understand the modifications thereby implied in 
the vibrational E2 intensity rules. This idea can give an indication why these nuclei seem 

to resemble a quadrupole vibrator with small perturbations in the E2 decay properties 
on one hand (a weak-mixing basis), while on the other hand the observed energy 
spectrum cannot be reconciled within an anharmonic vibrational description. Here, both 
the energies and E2 decay can be related with the "physical" basis obtained from the 
partial diagonalization i.e. U(S)¢ (°), where ~b (°) denotes the original, zero-order basis. 

Acknowledgements 

The authors are grateful to E Van Isacker, M. D61~ze and R.E Casten for many 

discussions on these intriguing facets of nuclear structure. Two of the authors (K.H. and 
C.D.C.) are grateful to the I.I.K.W. and N.F.W.O. for financial support. J.J. and H.L. 
acknowledge the support of the Swiss National Science Foundation. Part of this work 
was supported through the NATO research grant CRG 920011/R. 

References 

[ 1] J. Kern, A. Bruder, S. Drissi, V.A. Ioneseu and D. Kusnezov, Nucl. Phys. A 512 (1990) 1. 
[2] M. D61~ze, S. Drissi, J. Kern, EA. Tercier, J.P. Vorlet, J. Rikovska, T. Otsuka, S. Judge and A. Williams, 

Nucl. Phys. A 551 (1993) 269. 
[3] M. D616ze, S. Drissi, J. Jolie, J. Kern and J.P. Vorlet, Nucl. Phys. 554 (1993) I. 
[4] J. Kumpulainen, R. Julin, J. Kantele, A. Passoja, W.H. Trzaska, E. Verho, J. V ~ i ,  D. Cutoiu and 

M. Ivascu, Phys. Rev. C 45 (1992) 640. 
[5] R.E Casten, J. Jolie, H.G. B6mer, D.S. Brenner, N.V. Zamfir, W.-T. Chou and A. Aprnhamian, Phys. 

Lett. B 297 (1992) 19. 
[6] C. Fahlander, A. B~icklin, L. Hasselgren, A. Kavka, V. Mittal, L.E. Svensson, B. Vamestig, D. Cline, 

B. Kotlinski, H. Grein, E. Grosse, R. Kulessa, C. Michel, W. Spreng, H.J. Wollersheim and J. Stachel, 
Nucl. Phys. A 485 (1988) 327. 

[7] A. Giannatiempo, A. Nannini, A. Perego, P. Sona and G. Maino, Phys. Rev. C 44 (1991) 1508. 
[ 8 ] J. Wesseling, G.W. de Jager, H. de Vfies, M.K. Harakeh, R. De Leo and M. Pignanelli, Phys. Lett. B 

245 (1990) 338. 
[9] J. Rikovska, N.J. Stone, P.M. Walker and W.B. Wakers, Nucl. Phys. A 505 (1989) 145. 

[10] J.L. Wood, K. Heyde, W. Nazarewicz, M. Huyse and P. Van Duppen, Phys. Reports 215 (1992) 101. 
[11] K. Heyde, P. Van Isacker, M. Waroquier, J.L. Wood and R.A. Meyer, Phys. Reports 102 (1983) 291. 
[ 12] P. Van Duppen, E. Coenen, K. Deneffe, M. Huyse, K. Heyde and P. Van Isacker, Phys. Rev. Lett. 52 

(1984) 1974. 
[13] P. Van Duppen, E. Coenen, K. Deneffe, M. Huyse and J.L. Wood, Phys. Rev. C 35 (1987) 1961. 
[14] J. Bron et al., Nucl. Phys. A 318 (1979) 335. 
[15] D.M. Brink, R. de Toleda Piza and A.K. Kerman, Phys. Lett. 19 (1965) 413. 
[16] B. Sorensen, Phys. Lett. 21 (1966) 683. 
[17] D.R. Bes and G.G. Dussel, Nucl. Phys. A 135 (1969) 1. 
[ 18] E Iachello and A. Arima, The interacting boson model (Cambridge Univ. Press, Cambridge, 1987). 
[ 19] J. Jolie, in Proc. 8th Int. Conf. on Capture gamma-ray spec~oscopy and related topics, ed. J. Kern 

(World Scientific, Singapore, 1994) p. 43; 
H. Lehman, Diplomarbeit, Univ. de Fribourg (1994) unpublished. 

[20] M. Piiparinen et al., Nucl. Phys. A 565 (1993) 671. 



K. Heyde et al./Nuclear Physics A 586 (1995) 1-19 19 

[21] I. Thorslund et al., Nucl. Phys. A 568 (1994) 306. 
[22] D. Jerrestam et al., Nucl. Phys. A 571 (1994) 393. 
[23] J. Jolie and H. Lehmann, Phys. I.~tt. B (in press). 
[24] P.D. Duval and B.R. Barrett, Nucl. Phys. A 376 (1982) 213. 
[25] M. Sambataro, Nucl. Phys. A 380 (1982) 365. 
[26] K. Heyde, P. Van [sacker, M. Waroquier, G. Wenes and M. Sambataro, Phys. Rev. C 25 (1982) 3160. 
[27] D. Kusnezov, A. Bruder, V. Ionescu, J. Kern, M. Rast, K. Heyde, E Van Isaeker, J. Moreau, M. Waroquier 

and R.A. Meyer, Helv. Phys. Acta 60 (1987) 456, 
[28] A. Aprahamian, D.S. Brenner, R.E Casten, R.L. Gill, A. Pitrowski and K. Heyde, Phys. Lett. B 140 

(1984) 22. 
[29] A. Mhe~meod et al., Nucl. Phys. A 412 (1984) 113. 
[30] J. Jolie and K. Heyde, Phys. Rev. C 42 (1990) 2034. 
[31] K. Heyde, C. De Coster, J. Jolie and J.L. Wood, Phys. Rev. C 46 (1992) 541. 
[32] K. Heyde, C. De Coster, J. Wood and J. Jolie, Phys. Rev. C 46 (1992) 2113. 
[33] H. Lehmann and J, Jolie, to be published. 
[34] M. Bertschy, S. Drissi, EE. Garrett, J. Jolie, J. Kern, S. Mannanal, J.P. Vorlet, N. Wart and J. Suhonen, 

Phys. Rev. C (in press). 
[35] R.E Casten and D.D. Warner, Rev. MOd. Phys. 60 (1988) 389. 
[36] R. Hertenberger et al., Nucl. Phys. A 574 (1994) 414. 


