Optical Characterization of a Simulated Weakly-Compressible Shear Layer: Unforced and Forced

Alice M. Nightingale*, Stanislav Gordeyev**, and Eric J. Jumper§

Center for Flow Physics and Control
University of Notre Dame, Notre Dame, IN, 46556

Abstract

This paper uses a discrete-vortex code to examine a shear layer’s response to forcing at its origin and to develop a relationship between a shear layer’s optical characteristics and the commonly used characteristic growth length, vorticity thickness. The code and its thermodynamic overlay have been used in previous studies to predict the optically-aberrating characteristics of relatively-high-Mach-number, subsonic shear layers that can be classified as weakly compressible. A weighted average natural frequency is introduced and used to characterize the unforced shear layer in terms of an optical characteristic length referred to as optical coherence length. It is shown that optical coherence length is related to vorticity thickness by a factor of approximately 3.18. The study also shows that the use of single-frequency forcing produces a regularized shear layer for distances preceding the point where the unforced shear layer’s natural frequency matches the forcing frequency. In the case of the forced shear layer, a greater thickness is produced closer to its point of origin until collapsing

* Graduate Research Assistant, Aerospace and Mechanical Engineering Department, Fitzpatrick Hall, Notre Dame, IN 46556, DEPS Fellow, AIAA Student Member.
** Research Assistant Professor, Aerospace and Mechanical Engineering Department, Hessert Center, Notre Dame, IN 46556, AIAA Member.
§ Professor, Aerospace and Mechanical Engineering Department, Hessert Center, Notre Dame, IN 46556, AIAA Fellow.
onto the unforced shear layer thickness past the point of regularization. The aberration periodicity is shown to have lower robustness toward the furthest downstream extent of regularization due to uncontrolled pairing.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>aperture of laser beam, amplitude of forcing</td>
</tr>
<tr>
<td>C_δ</td>
<td>vorticity thickness growth rate constant</td>
</tr>
<tr>
<td>C_A</td>
<td>optical coherence length growth rate constant</td>
</tr>
<tr>
<td>f_f</td>
<td>forcing frequency</td>
</tr>
<tr>
<td>f_n</td>
<td>natural optical frequency</td>
</tr>
<tr>
<td>K_{GD}</td>
<td>Gladstone-Dale constant</td>
</tr>
<tr>
<td>n</td>
<td>index-of-refraction</td>
</tr>
<tr>
<td>R</td>
<td>velocity ratio</td>
</tr>
<tr>
<td>s</td>
<td>density ratio</td>
</tr>
<tr>
<td>U_c</td>
<td>convective velocity = (u_U + u_L) / 2</td>
</tr>
<tr>
<td>u_L</td>
<td>lower freestream velocity in x-direction</td>
</tr>
<tr>
<td>u_U</td>
<td>upper freestream velocity in y-direction</td>
</tr>
<tr>
<td>x</td>
<td>streamwise or flow direction</td>
</tr>
<tr>
<td>y</td>
<td>normal direction to the plane of the shear layer, perpendicular to main flow</td>
</tr>
<tr>
<td>Λ_n</td>
<td>optical coherence length</td>
</tr>
<tr>
<td>λ</td>
<td>dimensionless velocity ratio</td>
</tr>
<tr>
<td>δ_{vis}</td>
<td>shear layer thickness</td>
</tr>
<tr>
<td>δ_ω</td>
<td>vorticity thickness</td>
</tr>
<tr>
<td>θ</td>
<td>momentum thickness</td>
</tr>
<tr>
<td>θ_j</td>
<td>jitter angle</td>
</tr>
<tr>
<td>ρ_L</td>
<td>lower stream density</td>
</tr>
<tr>
<td>ρ_U</td>
<td>upper stream density</td>
</tr>
<tr>
<td>φ</td>
<td>phase shift of forcing function</td>
</tr>
</tbody>
</table>
Introduction

When an otherwise planar optical wavefront is made to propagate through a relatively-high-Mach-number, subsonic shear layer the wavefront becomes aberrated (see Fig. 1) adversely affecting its far-field intensity pattern. This degraded far-field intensity pattern is undesirable for use in optical systems. Although the optical characteristics of free shear layers have been investigated since the 1970’s,\(^1\) \(^2\) \(^3\) it was only in the late 1990’s that the cause of optical aberrations in shear layers was found to be the large-scale structures that naturally “roll up”.\(^4\) More specifically, it was found that the radial pressure gradients, and associated density deficit required to support the curvature of the structure, were the cause of a large part of the optical aberrations\(^4\). For a Mach 0.8/0.1 shear layer, like the one experimentally investigated in Refs. [5] and [6], the aberrations approximately 0.5 m downstream from its point of origin are sufficient to reduce its far-field intensity by more than 80% of its otherwise unaberrated, diffraction-limited far-field intensity. These measurements were taken using a 1 μm laser beam given an aperture of at least a 20 cm.\(^1\)

It has long been known that placing a conjugate waveform on the optical wavefront of a laser beam prior to its transmission through the aberrating medium results in the emergence of a planar-wavefront beam as it leaves the medium (see Fig. 1). Systems that sense the aberration and construct and apply the proper conjugate waveform at regular time intervals are termed adaptive-optic (AO) systems.\(^7\)

A traditional AO system operates in consecutive steps; the first step being to sense the aberration for which a conjugate must be constructed. For projecting systems, the aberration of an incoming optical signal (or the remaining residual aberration after a correction has been made) at any given instant is measured using a WaveFront Sensor (WFS). A Conjugate Constructor (CC), sometimes referred to as a “reconstructor,” then determines the distorted pattern necessary to make corrections. Although the rate at which the CC is able to convert wavefront measurements into command signals is important (c.f., below), in general the CC is typically much faster than the WFS and, at
Nightingale, Gordyev, and Jumper

present, does not form the bandwidth-limiting step. This conjugate (or some portion of it, see below) is then sent to a *deformable mirror (DM)*, whose electro-mechanical character, including its source of excitation (i.e., amplifiers), limits the rate at which it can respond to signals adjusting its figure. The conjugate wavefront is placed on the laser prior to its propagation through the aberrating turbulence by first reflecting it off the DM (see Fig. 1, bottom picture).

![Figure 1](image_url)

Fig 1. Planar wavefront propagated through a turbulent shear layer flow and emerging aberrated (top) and the effect of placing a conjugate correction on the beam prior to propagation (bottom).

In the traditional approach, the control system is a feedback system which forms another bandwidth-limiting step/component in the AO system. This last step has been extensively studied by Tyson 7 and others. Typically only ~ $1/10^{th}$ of the residual error can be removed for each DM update (usually the clock time of the WFS) in order to keep feedback approaches stable. This update rate is often referred to as the system gain, 0.1
in this case. On the other side of the equation is the bandwidth requirement set by the aberrating flow field itself. As described in Tyson7 and reexamined and affirmed specifically for aero-optic disturbances by Cicchiello and Jumper3, an aberration must be removed approximately ten times per its aberration-coherence-length clearing time in order to restore 80\% of its diffraction-limiting performance. This means that assuming a system gain of 0.1 and that the system-limiting component is the wavefront sensor for an aberrating flow that initially reduces the Strehl ratio to less than 0.1, a traditional AO approach, in which an aberration has a clearing frequency through the aperture of 1 kHz, the wavefront sensor must frame at 100 kHz in real time in order to restore an 80\% Strehl ratio. The fastest real-time wavefront sensors that exist today operate at an order of magnitude lower than this. Even if a real-time wavefront sensor were available, other components in the AO system would form a barrier to correcting a 1 kHz aberration; yet the aberrations posed by a high-Mach subsonic shear layer are at least 1 kHz.8, 9, 10, 11, 12

Realizing that such bandwidth requirements make traditional approaches unrealistic, this paper explores the beginning stages of an alternative approach to performing adaptive optic corrections of a laser propagating through a high-speed subsonic shear layer. The end goal will be to use flow control to “regularize” the shear layer’s aberrating character, effectively reducing the bandwidth requirements necessary to perform adaptive-optic corrections. Two separate experiments performed at Notre Dame, a forced heated jet and a forced shear layer experiment, have been conducted showing successful adaptive-optic corrections of the emerging laser using an open-loop phasing technique.9 In a less contrived manner, a control system will be required to perform this optimization in real time without resorting to open-loop, manual amplitude and phase adjustments. In order to develop the required control system it will be necessary to develop models of each component in the system, including the shear layer itself and its optical response to forcing.

The results shown in this paper were obtained using a discrete-vortex-based code referred to as the “weakly-compressible model.” Developed by Hugo and Jumper10, 11
and improved by Fitzgerald and Jumper4; this code was first used to develop wavefront sensors and later to discover the physics of the aberrating mechanism in a matched-total-temperature shear layer.4 The weakly-compressible model has been shown to closely match the optical response of an unforced shear layer.12, 13 This paper describes the first steps in performing system identification of a shear layer’s response to forcing using the weakly-compressible model. The paper will give a brief description of the code and a review of comparisons between the code’s unforced characteristics and those of experimental shear layers. Subsequently, a measure of the shear layers optical characteristics will be defined. In particular, a relationship between a shear layer’s optical response and more-traditional measures of a shear layer’s fluid-mechanic structure found in literature will be established. Finally, the shear layer’s response to forcing will be analyzed in terms of its optical character.

The Weakly-Compressible Model

A detailed description of the weakly-compressible model, discrete-vortex-based code, can be found elsewhere4; however, a brief description of its underlying components will be given here. The code uses a two-dimensional discrete vortex method to first compute the velocity field for a free shear layer that originates at a splitter plate, and has been used to simulate shear layers with high-speed sides up to Mach 1.0.13 In even the highest-speed cases, the convective Mach numbers were less than 0.45, and as discussed in Fitzgerald and Jumper4, such shear layers are referred to as weakly compressible, making incompressible approaches to predicting the velocity field only slightly in error when neglecting the dilatation terms.4, 14 The unsteady velocity field resulting from the discrete-vortex method forms the basis for computing the thermodynamic properties. The thermodynamic properties are found by overlaying the momentum and energy equations (along with an isentropic estimate of total temperature variation) onto the velocity field by first back solving for an initial estimate of the pressure field. Iterative corrections for the temperature and density fields are then performed until a self-consistent field of thermodynamic properties is converged upon. Once the converged
density field is known at each time step, the density is converted to index-of-refraction using the Gladstone-Dale constant.

As described in Ref. [4], the largest contributor to the optical aberrations in the shear layer is the formation of coherent structures in the shear layer under the influence of the Kelvin-Helmholtz instability. In the convecting frame, these coherent structures form vortices whose diameters roughly match the vorticity thickness of the shear layer and contain high flow curvature. This curvature gives rise to concomitant pressure gradients that in turn give rise to relatively deep low-pressure cells or “wells” within the vortices accompanied by drops in the local density. Local higher-pressure and density regions that form in the local stagnation regions or saddle points along the braids between vortices (in the convecting frame) also contribute to the aberrating character of the shear layer. The most controversial part of this explanation for the physics of the shear layer’s aberrating character was the notion that relatively-deep pressure wells could form in a shear layer, since the prevailing thought at the time was that static-pressure fluctuations in a shear layer were negligible, based on the so-called strong Reynolds analogy. However, experiments performed to investigate fluctuating pressure showed that the actual pressure wells measured in these vortices closely matched the predictions of the weakly-compressible model. The optical character was also shown to closely match the predictions of the weakly-compressible model. Figure 2 gives selected results from these comparisons. Extensive comparisons of the discrete-vortex code with experiments have been reported elsewhere as well. Among these is the comparison of the amplification of disturbances input at the splitter plate to the theoretical linear-stability amplification factors. These latter comparisons showed good agreement to theory, which itself has been shown to be in good agreement with experiment.
Fig 2. Comparisons between the predictions of the weakly-compressible model4 (upper figures) and experiment11, 12 (lower figures).

This paper uses results obtained from the weakly-compressible model to investigate the relationship between a shear layer’s vorticity thickness and its optical characteristics. An analysis of the shear layer’s response to forcing is also presented.
Characteristics of Unforced Shear Layers

In general, most experimental studies characterize a shear layer in terms of its thickness measure, the most common of which are either the shear layer’s vorticity thickness, δ_ω, or the shear layer’s momentum thickness, θ, given respectively by

$$\delta_\omega = \frac{u_U - u_L}{\left(\frac{\partial u}{\partial y}\right)_{\text{max}}}$$

and

$$\theta = \int_{-\infty}^{\infty} \frac{u(y) - u_L}{u_U - u_L} \left(1 - \frac{u(y) - u_L}{u_U - u_L}\right) dy,$$

where $u(y)$ represents the streamwise velocity component as a function of vertical location, y, for a given downstream location. These two measures are approximations of the on-average structure size in the vertical or normal direction to the plane of the shear layer. Although highly turbulent, on average a shear layer experiences a linear growth rate in terms of its vorticity thickness and momentum thickness due to the pairing/amalgamation process undergone by the large-scale vortical structures convecting downstream. Extensive experimental studies of shear layers with convective Mach numbers less than ~ 0.45 were performed by Brown and Roshko, who were among the first to predict a shear layer’s growth rate by

$$\frac{\delta_\omega}{x} = C_\delta \frac{(1 - R) \left(1 + s^{\frac{1}{2}}\right)}{\left(1 + R s^{\frac{1}{2}}\right)},$$

where $R = u_L/u_U$, $s = \rho_L/\rho_U$, and $C_\delta = 0.085$. Several simulations with varying convective velocities and velocity ratios were performed comparing the weakly-compressible model results to the corresponding predicted growth rate based upon Eq. (3) (see Table 1) given an assumed density ratio, s, of 1.0. Figure 3 shows the vorticity thickness versus downstream distance for a free shear layer simulated with an upper free stream velocity of 261.04 m/s and a lower free stream velocity of 34.7 m/s to simulate the flow field.
experimentally studied in Refs. [5] and [6]. The numerically computed vorticity thickness (shown by ▲'s in Fig. 3) has an approximate growth rate of 0.131, closely resembling the predicted growth rate from Eq. (3) of 0.130, where $R=0.13$ and $s=1.0$ (shown by a solid line in Fig. 3). It should be noted that the DVM often over predicts shear layer growth rates for actual gas flows at the speeds simulated; however, still providing considerable insight into the flow field characteristics assuming a density ratio of 1.0.

![Fig 3. Vorticity thickness versus downstream distance for an unforced shear layer where $u_U = 261.04$ m/s and $u_L = 34.7$ m/s.]

The thermodynamic properties, including time-dependant density fields, were then computed from the series of velocity fields and used to determine the effect of a laser propagating through the shear layer. In each of the computations referred to in this paper, a series of approximately 8,000 timesteps was run, with approximately 33 μs between timesteps. Simulations were performed using an initial vortex core size of 0.01725 meters and a rectangular velocity grid spacing in both the x- and y-directions of 0.005 meters. A simulated beam with an aperture of 0.25 meters was swept along the x-direction (propagated perpendicularly through the flow field) to obtain optical path length.
and optical path difference measures (see Eqs. (4) and (6) for their definitions). The following section derives another thickness measure in terms of the shear layer’s optical characteristics. The goal of this analysis is to provide a means of characterizing a shear layer’s optical properties and link those back to the commonly used vorticity thickness measure defined previously.

Optical Response of the Shear Layer

As described in Ref. [4], the index-of-refraction fields are sufficiently weak that a simple integration through the field in the y-direction can be used to compute the optical path length (OPL) as a function of position and time,

\[
OPL(x,t) = \int_{y_1}^{y_2} n(x,y,t)\,dy
\]

(4)

where the index of refraction is related to the density by

\[
n(x,y,t) = 1 + K_{GD}\rho(x,y,t).
\]

(5)

The optical path difference, \(OPD(x,t)\), may then be computed by removing the spatially-averaged OPL over the aperture from the local OPL according to,

\[
OPD_A(x,t) = OPL(x,t) - \overline{OPL}(x,t),
\]

(6)

producing a wavefront that is advanced or retarded as a function of x, from the mean phase over the aperture. The optical wavefront is defined as the locus of points along which the beam’s phase is constant. It can be shown\(^{15}\) that the displacement of the wavefront from the mean at an instant in time, \(t\), has the conjugate value of the \(OPD(x,t)\). Due to this, it is common for the wavefront to be described as \(OPD\).

According to Huygens’ Principle, a wavefront will propagate in a direction normal to itself. Concomitantly, a small-aperture laser beam initially normal to an incoming laser’s wavefront, directed through an aberrating flow field in the y-direction will emerge normal to the outgoing aberrated wavefront\(^{16}\) at an angle, \(\theta_j(x,t)\), defined as

\[
\theta_j(x,t) = \arctan \left(\frac{d\,OPD(x,t)}{dx} \right).
\]

(7)
When a small-aperture beam is projected through an experimental turbulent flow field, its emerging angle, $\theta_j(x,t)$, can be recorded at high rates exceeding 100 kHz. This time series of angles is referred to as the beam’s “jitter.” The following results were obtained by numerically propagating small-aperture laser beams through the flow field at several locations downstream from the splitter plate. Time-varying jitter signals were obtained from the weakly-compressible model by calculating a time series of OPD from the density field using Eqs. (4)-(6) and computing jitter angles using Eq. (7).

The frequency content of the jitter signal is clearly related to the coherent structures in the shear layer, and as such contains information about the coherence lengths of the aberrating structures convecting through the beam. Figure 4 shows the power spectral density (PSD) of the jitter signals at selected downstream locations from the splitter plate. A mean or “natural optical frequency” at each x-location was computed from the PSD’s according to,

$$f_n(x) = \frac{\int PSD(f \cdot x) f df}{\int PSD(f \cdot x) df},$$

where the n subscript on f indicates the “natural,” unforced optical frequency in the shear layer at the particular x-location. Figure 5 shows a plot of the natural optical frequency versus distance from the splitter plate. It should be noted that Eq. (8) provides a means of calculating the average frequency versus downstream distance based upon numerical data. Therefore, when applying this method to experimental data, great care must be taken in filtering out any frequencies not associated with the shear layer dynamics themselves. The results displayed in Figs. 4 and 5 were obtained using a numerical sample rate of approximately 33 μs. At each x-location, the PSD was calculated by averaging twenty different data sets, each containing a series of 2,048 consecutive timesteps. The PSD plots and averaged natural optical frequencies for a given set of flow field conditions are shown in Fig.4.
As mentioned above, these frequencies can be related to an average optical coherence length by dividing the convection velocity by the natural optical frequency:

\[\Lambda_n(x) = \frac{U_c}{f_n(x)} \]

(9)

As each coherent vortical structure passes through one of the small aperture lasers, the beam undergoes one full cycle of beam jitter corresponding to one full wavelength of optical coherence length. This means that optical coherence length, as defined in Eq. (9), is a measure of the statistical on-average streamwise size of large-scale vortical structures passing through the laser beam (i.e. spacing between large-scale structures). Figure 6 shows a plot of the optical coherence length versus downstream distance from the splitter plate.
Similar to vorticity thickness (Fig. 3), which provides a measure of the shear layer’s thickness in the vertical/normal direction, the unforced shear layer structures also experience a linear growth rate in the streamwise direction. However, when comparing Fig. 3 to Fig. 6, a difference between the growth rate values in these two directions is evident. This particular shear layer case produces a numerical optical coherence growth rate of 0.37 compared to a numerical vorticity thickness growth rate of 0.131. Several shear layer cases were simulated with varying upper and lower stream velocities to further investigate this difference in growth rates. Each case was simulated using a rectangular grid with 0.005 meter spacing in the x- and y- directions. Time-averaging was calculated using a sample size of approximately 8,000 timesteps given an approximate timestep of 33 μs. Each jitter signal was evaluated at a single location in space, simulating an “infinitesimal” small-aperture beam. Time-averaged vorticity thicknesses and time-averaged optical coherence lengths were numerically computed to determine the relationship between these two measures of structure size. Figure 7 shows
Nightingale, Gordeyev, and Jumper

a plot of the numerical vorticity thickness growth rate versus numerical optical coherence length growth rate. A linear fit was used to determine the factor relating these two shear layer measures, where the norm of the residuals was approximately 0.026.

Fig 7. Numerically computed optical coherence length growth rate versus vorticity thickness growth rate given varying upper and lower stream velocities.

As seen from Fig. 7, the unforced shear layer structures grow at a rate approximately 3.18 times greater in the streamwise direction as compared to the normal direction. Therefore, optical coherence length closely defines the measure of vorticity thickness with a factor of 3.18 being the relationship between the coherence length in the x-direction (related to vortex spacing) and the shear layer thickness in the normal or y-direction (related to vortex size). It is important to notice that this factor of 3.18 is larger than the factor of 1.5 – 2.0 found in Ref. [3] describing the relationship between coherent-structure scale size, δ_m, in a shear layer and the visual shear layer thickness, δ_{vis}. This difference is attributable to fact that the natural optical frequency defined in Eq. (8) is essentially a measure of the vortex spacing in the x-direction rather than the visual shear layer thickness. The factor of 3.18 agrees with results given in Refs. [8] and [3], where it is
noted that a shear layer’s large-scale structures are typically spaced a distance of approximately 3 times the shear layer’s thickness at each respective x-location.

The results shown in Fig. 7 are listed in Table 1 along with their respective convective velocities and velocity ratios. On average, both the optical coherence length growth rate and the vorticity thickness growth rate increase as the ratio of lower stream velocity to upper stream velocity decreases. In other words, as the difference in velocity between the upper and lower streams increases so do the rates at which the large-scale structures grow as well as the spacing between them.

<table>
<thead>
<tr>
<th>U_c (m/s)</th>
<th>R</th>
<th>$\Delta\Lambda_\omega/\Delta x$</th>
<th>$\Delta\delta_\omega/\Delta x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>0.06</td>
<td>0.42</td>
<td>0.15</td>
</tr>
<tr>
<td>147.9</td>
<td>0.08</td>
<td>0.43</td>
<td>0.15</td>
</tr>
<tr>
<td>147.9</td>
<td>0.13</td>
<td>0.37</td>
<td>0.13</td>
</tr>
<tr>
<td>148.5</td>
<td>0.15</td>
<td>0.32</td>
<td>0.12</td>
</tr>
<tr>
<td>117.5</td>
<td>0.18</td>
<td>0.33</td>
<td>0.12</td>
</tr>
<tr>
<td>127.5</td>
<td>0.19</td>
<td>0.30</td>
<td>0.11</td>
</tr>
<tr>
<td>147.9</td>
<td>0.28</td>
<td>0.25</td>
<td>0.09</td>
</tr>
<tr>
<td>117.5</td>
<td>0.31</td>
<td>0.22</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Although a density ratio, s, of 1.0 has been assumed throughout this numerical study, it seems reasonable that the form of the well-established vorticity thickness growth rate equation (Eq. (3)) would also be relevant for optical coherence length growth rates. Therefore, optical coherence growth rate may be predicted by

16
where the new constant, \(C_\Lambda \), is equal to 0.27 (this value was obtained by multiplying the vorticity thickness constant by the scaling factor 3.18 derived above). As previously noted, the DVM commonly over predicts a shear layer’s growth rate, therefore a numerical correction factor is needed to compare the analytical optical coherence length growth rate (Eq. (10)) to the numerically computed growth rates. A correction factor of 0.86 was computed based on the numerical results given in Table 1 and the analytically calculated growth rates using Eq. (10) (assuming a density ratio of 1.0). Applying this correction factor to Eq. (10), the predicted optical coherence length for the previously studied shear layer case (Fig. 6) was computed and plotted against the numerically computed growth rate. Figure 8 shows good correspondence between the analytical optical coherence growth rate of 0.36 and the numerical optical coherence growth rate of approximately 0.37.

\[
\Lambda_\text{opt} = C_\Lambda \frac{1 - R \left(1 + \frac{1}{s^2}\right)}{\left(1 + R \frac{1}{s^2}\right)}
\]

(10)

Fig 8. Natural coherence length versus downstream distance for an unforced shear layer with \(u_L = 261.04 \text{ m/s} \) and \(u_L = 34.7 \text{ m/s} \).
For applications in which optical (non-intrusive) measuring techniques become more appropriate, optical coherence length provides a means of analyzing and characterizing the shear layer’s flow dynamics. It also affords a link between commonly used thickness characteristics and optical characteristics of the shear layer. Such a relationship becomes beneficial when analyzing the optical response of a shear layer to forcing described in the following section.

Response of the Weakly-Compressible Model to Forcing

A recent numerical study by Freund, et al.\(^{18}\) and an experimental investigation by Rennie et al.\(^{19}\) showed that the most effective means of forcing a shear layer is to displace the edge of the splitter plate in the direction normal to its surface. In the case of the discrete-vortex code, forcing was simulated by inserting the first vortex into the shear layer displaced from the splitter-plate edge in the vertical, \(y\), direction by an amount,

\[
d(t) = A \sin \left(2\pi f_t t + \phi\right). \tag{11}
\]

A range of frequencies and amplitudes were applied to several different shear layer cases in order to establish the response of a shear layer to forcing as predicted by the weakly-compressible model.

Figures 9 and 10 each show two plots of the effect of forcing in terms of vorticity thickness (Figs. 9) and optical coherence length (Figs. 10). Figures 9 show vorticity thickness versus downstream distance for a shear layer forced with a range of amplitudes given a constant forcing frequency, \(f_t = 650\) Hz [left] and for a shear layer forced with varying frequencies while maintaining a fixed amplitude, \(A = 2.5\) mm [right] (per Eq. (11)). The obvious effect of forcing is to abruptly increase the shear layers growth rate and then “stabilize” its thickness for a region preceding the position where the shear layer thickness would have been in the unforced case; at this point the forced shear layer begins growing at a rate similar to the unforced shear layer. The shear layer’s spreading rate is therefore slightly suspended before pairing and continuing to spread again. Increasing the forcing amplitude moves the sudden thickening of the shear layer, related
Nightigale, Gordeyev, and Jumper
to the structure roll-up, closer to the splitter plate. This is in agreement with previous research studies which measure the growth of shear layers under the influence of forcing.\(^8,18\) In an experimental study performed by Oster and Wygnanski, similar trends were observed for a forced mixing layer\(^20\); increasing the forcing amplitude resulted in an earlier and more robust stabilization of the mixing layer, and decreasing the forcing frequency moved the region of regularization further downstream.

Fig 9. WCM predictions of vorticity thickness versus downstream distance for a forced shear layer with an upper stream velocity of \(u_U = 261.04\) m/s and a lower stream velocity of \(u_L = 34.7\) m/s; the left plot shows results for a shear layer forced at a frequency, \(f_f = 650\) Hz, with varying forcing amplitudes, and the right plot shows results for a shear layer forced at varying frequencies with an amplitude, \(A = 2.5\) mm.
Fig 10. WCM predictions of optical coherence length versus downstream distance for a forced shear layer with an upper stream velocity of $u_U = 261.04$ m/s and a lower stream velocity of $u_L = 34.7$ m/s; the left plot shows results for a shear layer with $f_f = 650$ Hz with varying forcing amplitudes, and the right plot shows results for a shear layer forced at varying frequencies with $A = 2.5$ mm.

Figures 10 show the optical coherence length versus downstream distance for the same set of varying forcing conditions. It is clear that the information contained in Figs. 9 and 10 display similar trends. The obvious difference is that the vorticity thickness shows a flatter slope in the “region of regularization” than the optical coherence length. This is due to the fact that as the structures evolve and convect, the spacing between them grows slightly in the flow direction while retaining approximately the same thickness in the y-direction, thus causing the optical coherence length to maintain a slight increase with downstream distance in the regularized region. This can be seen more clearly when studying plots of the shear-layer loci: the locus of points indicating the locations of the discrete vortices that define the undulation of the shear layers “contact surface.” Figures 11 show two such plots of the shear-layer loci, one for the unforced shear layer shown in the upper plot and the other for the forced shear layer shown in the lower plot.
The results displayed in Figs. 9, 10, and 11 also agree well with Wygnanski and Oster’s prediction of a mixing layer’s spatial extent of regularization. In Ref. [20], a regularized region, delineated by an array of quasi-two-dimensional large scale vortices that do not interact with one another, is defined by the locations, \(x \), satisfying the following inequality,

\[
1 < \frac{\lambda f}{U_c} x < 2, \quad (12)
\]

where \(\lambda \) is a dimensionless velocity ratio defined as,

\[
\lambda = \frac{u_U - u_L}{u_U + u_L}. \quad (13)
\]

Given the set of parameters simulated in Figs. 9, 10, and 11, where the forcing frequency is equal to 650 Hz, Eq. (12) predicts a regularized region between 0.3 and 0.6 meters downstream from the splitter plate. This prediction corresponds well with the region of regular coherent large-scale structures shown in Fig. 11. Optical coherence length
Nightingale, Gordyev, and Jumper provides a very useful characterization of the shear layer’s growth rate in terms of its optical properties. It also aids in the selection of the appropriate forcing frequency necessary to regularize a specified region within the shear layer.

Conclusions

Numerical two-dimensional high-Mach-number subsonic shear layers and related optical aberrations were studied using a discrete vortex method coupled with the Weakly-Compressible Model. The model was shown to qualitatively and quantitatively match experimentally-observed shear layer evolution, and hence used to study the optical characteristics of the unforced and forced free shear layer. The results reported in this paper demonstrate that optical interrogation of a variable-index-of-refraction shear layer yields similar information to other methods of documenting the shear-layer’s characteristics. Optical coherence length, a statistical measure of the on-average large-scale structure size in the streamwise direction, showed a linear growth rate of approximately 3.18 times that of the vorticity growth rate. This factor agrees with previously reported vortex spacing discussions. Because a linear relationship exists between the shear layer’s vorticity thickness, δ_ω, and its optical coherence length, Λ_n, optical measurements provide a non-intrusive means of measuring the shear layer’s local structure size in the x-direction and could be useful when intrusive ways of measuring thickness are difficult or impossible, as in chemically- or thermally-hostile environments (jet-engine exhaust, for example).

This numerical study demonstrated that it is possible to regularize a high-Mach subsonic shear layer through forcing, corroborating with previously run experimental investigations. In agreement with previously published studies, the forced shear layer was shown to experience an increased growth rate early on, until a region of stabilized growth was achieved. Within this region of regularization, large-scale coherent structures retain a relatively constant vertical/normal size while slightly growing in the streamwise direction. As the structures convect downstream, a pairing or merging
process is eventually undergone at which point the forced shear layer begins growing at a rate similar to the unforced case. Stabilizing the fluid mechanics of the shear layer also regularized its optical characteristics.

This study was performed specifically to investigate the applicability of using flow control to regularize the shear layer and its optical characteristics, with the goal of determining an estimation model of the emerging aberrated wavefront. Such an estimation model would be used in an alternative AO approach, where a prediction of the wavefront aberrations would be “fed forward” and synchronized with the actual shear layer induced aberrations using a phase-locked-loop feedback control scheme.

Acknowledgments

These efforts were sponsored by the Air Force Office of Scientific Research, Air Force Material Command, under Grant Number FA9550-06-1-0160. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The authors are also grateful to the Directed Energy Professional Society for their support as well as to Dr. Bill Goodwine for his role as a co-advisor.

References

Nightingale, Gordeyev, and Jumper

Nightingale, Gordeyev, and Jumper

