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In this paper we present two algorithms for estimating the aero-optical aberration of a 
transonic flow around a 2-D turret based on Malley probe signals or pressure signals from 
few selected points. These two algorithms use Artificial Neural Networks and Linear 
Stochastic Estimation of varying model orders to estimate Proper Orthogonal 
Decomposition modal coefficients. These estimated coefficients are then used to reconstruct 
an estimated wavefront. This estimated wavefront is subtracted from the true wavefront to 
obtain a simulated reduction in the overall level of optical aberration. Reductions of up to 
48% are achieved for both models. A robustness analysis is also performed, in which it is 
found that the algorithm is not sufficiently robust to changing flow conditions. Solutions are 
proposed for further investigation. 

I. Introduction 
 

URRETS are often used to send or transmit a laser beam from an airborne platform, as turrets provide convenient 
mechanical means to steer the laser beam. Also turrets are used in airborne imaging applications. However, its 

non-aerodynamic bluff-body shape creates a complex turbulent flow around it [1], and the resulting unsteady density 
fluctuations around the turret might impose detrimental aero-optical effects [2,3] on the incoming or outgoing beam 
at even low Mach number of 0.3. As these aero-optical effects result in unwanted unsteady beam defocus and jitter 
on the target, they might disrupt a high-speed optical link in free-space laser-based communication systems or might 
blur images taken using from airborne turrets.  
 When the flow is subsonic everywhere around the turret, essential flow features and related aero-optical 
distortions have being extensively studied in last few years and fairly well-understood [1,3-7]. But for incoming 
Mach numbers larger than approximately 0.55, the flow on top of the turret becomes locally supersonic, with a 
resulting local moving shock [1,5,8], with the shock extent and the angle depending on the incoming Mach number. 
The shock creates unsteady density gradients in the flow and promotes an earlier separation of the flow off the 
turret. All these shock-related features add additional strong aero-optical distortions to the outgoing beam [5,9,10].  
 Several ways to mitigate the aero-optic, shock-related problem has been recently demonstrated. One 
approach is to manipulate the flow using the flow control. The passive flow control utilizes a porous screen, which 
introduces total pressure losses near the surface of the turret and, as a result, slows the flow down to subsonic 
speeds, thus eliminating the unsteady shock [10]. The active flow control shows some promise in directly 
manipulating the shock [11]. 
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 An alternative approach, called an adaptive optics (AO) [12], does not (usually) modify the flow but rather 
measures the effective optical aberrations using direct measurements and cancels them imposing a conjugate 
wavefronts on the outgoing beam. This conventional adaptive optics technique is widely used in ground-based 
astronomy [12] to correct for low-frequency (~ 1 - 10 Hz) atmospheric-related distortions. As aero-optical 
aberrations are typically of much higher frequency (~1 – 5 kHz), latency issues in the feedback loop, related to 
measuring instantaneous wavefronts, make the traditional adaptive optics approach to be currently outside of 
capabilities of correcting adaptive-optical systems [13, 14]. 
 As the main problem in applying the conventional AO to aero-optics is related to measuring wavefronts 
fast enough [13,15], several variations of AO approaches, which do not require direct wavefront measurements,  
have been recently investigated to address aero-optical mitigation. One of them, called an open-loop approach, relies 
on combining flow control and adaptive optics. It forces the flow to be predictable using flow regularization 
techniques [16], thus eliminating the need to measure instantaneous wavefronts, and uses a Phased-Locked Loop 
technique [13], to compensate for these known distortions.   
 A second variation of AO, instead of measuring wavefronts, estimates them from either optical input from 
very sparse array of sensors, or from non-optical input from several sensors. The non-optical input using surface 
pressure field to estimate aero-optical environment around turrets was investigated by Andino et al [17], in which 
POD was combined with surface pressure measurements to develop a closed-loop feedback controller. Controllers 
have also been developed with the goal of minimizing pressure fluctuations across a beam aperture in a pitching 
environment using active flow control [18]. 
 This paper will focus on a way of estimating aero-optic flow disturbances using two estimation techniques: 
Proper Orthogonal Decomposition (POD) with an Artificial Neural Network (ANN) [19] and POD with Linear 
Stochastic Estimation (LSE). The input signals will be either optical or non-optical in nature. This is advantageous 
for two reasons: 1) in some cases, the target of a laser-based system may not provide a sufficiently strong return 
signal to drive a traditional closed-loop adaptive optic system and 2) it may be possible to significantly reduce the 
computational effort required for wavefront estimation if low-order modeling and relatively few and preferably 
analog sensors are used to estimate the flow state rather than very computationally-intensive Shack-Hartmann 
Wavefront Sensors.  
 In this paper, it is desired to build on these aero-optic mitigation strategies by investigating new techniques 
that make use of either optical or non-optical measurements to estimate instantaneous optical wavefronts. The 
techniques used in this paper will combine a priori knowledge of the flow’s behavior with actual measurements to 
estimate the state of the flow. Eventually, an adaptive optics system could be built using the estimation techniques 
presented in this paper. 
 This technique was applied to the transonic flow around a two-dimensional turret. The flow around the 
two-dimensional turret was shown to have most essential flow features, as around three-dimensional turrets [1,20] 
and was found to provide a convenient platform to understand the nature of aero-optical distortions around turrets, 
as well as to test different flow mitigation approaches at subsonic speeds [21-23]. Chapter II provides a theoretical 
background and Chapter III describes the experimental set-up. Results of estimating aero-optical distortions from 
either optical (deflection angles) or non-optical (surface pressure) inputs are provided in Chapters IV and V, 
respectively. Conclusions are given in Chapter VI.  
  

II. Theoretical Background 
The purpose of this paper is to study the feasibility of an aero-optic wavefront estimator from optical or 

non-optical data. Similar to [17], it is proposed to first decompose wavefronts into Proper Orthogonal Modes, and 
then to train an estimation algorithm to obtain the modal coefficients from relevant optical or non-optical signals. 
Let the true state of the flow field at time step k be denoted as yk. The true state of the system evolves according to 
some non-linear vector-valued function f, 

1( )k k−=y f y . [1] 
Let the true instantaneous optical path difference (OPD) of the flow field at time step k be denoted as dk. 

Measurements of OPD may be obtained using some measurement function hOPD on the true flow state, 
( )k OPD k=d h y . [2] 

Similarly, the input field (limited optical or surface pressure values) may be measured as 
 ( )k p k=p h y . [3] 

The wavefronts estimated from measurements using the high-speed wavefront sensor are snapshots of kd .  
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 The difficulty with using a direct wavefront feedback approach as it relates to adaptive optics is that much 
computational effort is required to reconstruct the wavefronts and full wavefront feedback may not always be 
possible in practical systems. However it is generally much easier to measure beam jitter at selected points or to 
measure the pressure field near the aperture. Therefore, it is desired to establish an empirical relationship between 
OPD and measurements of the optical/pressure field, 

 1 1 2
ˆ ˆ ˆ ˆ( , ,..., ; , ,..., )k k k k M k k k M− − − − −=d g p p p d d d    [4] 

where g is some non-linear function and M is the order of the model. One of the two approaches taken in this paper 
is to establish the non-linear function g by forming an artificial neural-network (ANN) and training this network 
using time-resolved observations of OPD and optical/pressure fields. Once the network is trained, it can then be used 
to estimate OPD using a concurrent measurement of the optical or pressure field and past estimations of the OPD 
field. Figure 1 shows the topology of the neural networks used in this paper. The algorithm shown in Figure 1 is a 
direct implementation of the function g. In this figure, M is the order of the system (number of past points used), N is 
the number of outputs, and L is the number of spatial points where inputs were measured. The first stage of the loop 
takes in the most recent M estimations of the POD coefficients and inputs. These coefficients are then weighted by 
the matrices W1 and W2, and are then added together with a bias matrix b1. It should be noted that up to this point, 
the neural network is very similar to Linear Stochastic Estimation and will be examined later in the paper as well. 
The weighted inputs are now fed into activation functions, which are typically sigmoid in nature. The choice of 
activation function often used in neural networks is the hyperbolic tangent. This choice is made because the 
hyperbolic tangent is defined over the domain of real numbers, but is bounded asymptotically on the interval [-1, 1]. 
It is this choice of activation function that gives the neural network its nonlinear character and makes it distinct from 
LSE. The outputs of activation layer are then passed into a final output layer, which is a simple linear 
transformation. The outputs of this layer are the estimation of the current POD coefficients. These coefficients are 
then fed back into the input layer on the next iteration, thereby completing the feedback loop. The training objective 
is then the error between the predicted coefficients and the measured coefficients based on a sequence of training 
inputs. This objective is minimized using the Levenberg-Marquadt algorithm. MathWorks’ MATLAB Neural 
Network Toolbox was used to perform the optimization. 

 
Figure 1: Neural network topology 

 The aforementioned approach will allow OPD to be estimated from the optical/pressure field, but direct 
implementation of this scheme would be extremely computationally intensive. A better approach is to use Proper 
Orthogonal Decomposition to reduce the required dimensionality of the model. 

The objective of Proper Orthogonal Decomposition [24] in the scalar case is to approximate a function, 
z(x,t) over some domain as a linear combination of temporal coefficients ak(t) and spatial modes, φk(x) as 

1
( , ) ( ) ( )

M

k k
k

z x t a t xϕ
=

≈∑ .   [5] 

Furthermore, if orthonormality is imposed on the basis functions as 

( ) ( )m n mnX
x x dxϕ ϕ δ=∫ ,  [6] 

then the temporal coefficients may be calculated as 

( ) ( , ) ( )k kX
a t z x t x dxϕ= ∫ .  [7] 
The problem of calculating POD modes in the multi-dimensional case for discrete-time data is typically 

solved using the singular-value decomposition (SVD). In our case, let V be a matrix of measurement snapshots of 
the OPD organized by column vectors of samples ordered by increasing time as shown 

1 2 N =  V d d d   .  [8] 
Then V may be decomposed using SVD as 



Burns et al                                                                                                               AIAA-2014-0319 

4 
American Institute of Aeronautics and Astronautics 

 

H=V UΣW ,  [9] 
and the spatial modes may be extracted from the columns of U, 

[ ]1 2 N=U φ φ φ . [10] 
The temporal coefficients are then calculated from a projection of the spatial modes onto the original 

observations.  
+=a U V  [11] 

The modes are ranked by the importance of their contribution to the overall energy of the system. Quite often, the 
POD modes converge quickly to give a good low-dimensional model. This is especially true when very dominant 
flow structures are present, such as shocks. This approach allows the modes to be determined a priori, so that the 
model may be trained to estimate the modal coefficients rather than the entire OPD field.  

Linear Stochastic Estimation (LSE) LSE will be used as a baseline model with which to compare the ANN 
approach. As discussed previously, the LSE approach is essentially equivalent to the first stage in the ANN 
algorithm. The variation of LSE used in this paper seeks to determine the A and B matrices of a discrete linear 
system, 

1

2

ˆ

ˆˆ

ˆ

k

k
k k

k M

−

−

−

 
 
 = + 
 
  

d

dd A Bp

d




. [12] 

where the tilded quantities are physical measurements such as pressure or Malley probe signals, and the hatted 
quantities are estimations of the POD coefficients of the system. In this way, we make the careful distinction 
between measurements and estimations. LSE seeks to find the A and B matrices subject to the minimization 
objective, 

[ ]
, 1

ˆ, arg min
NxNM NxL

K

k k
k M∈ ∈ = +

= −∑
A R B R

A B d d , [13] 

where M is the order of the system, N is the number of outputs, L is the number of inputs and the norm, ⋅ , is the 
Euclidian or the L2-norm. The matrices may therefore be easily obtained using an optimization algorithm such as 
gradient descent. 
 

III. Experimental Setup and Flow Regimes 
To investigate aero-optical effects at transonic speeds around the cylindrical turret, a turret with a 

conformal window was designed and manufactured, as shown in Figure 2. The turret is 98 mm long with a 104 mm 
diameter. The turret has a built-in set of optical elements, consisting of two off-the-shelf cylindrical lenses and a flat 
mirror, designed to reflect an incoming collimated beam with a minimum amount of optical distortions; that is, 
optically it is equivalent to an optical flat mirror. The optical aperture size is 30 mm x 50 mm. The outer curvature 
of the front cylindrical lens matches the curvature of the cylindrical turret. Nine unsteady pressure sensors, shown in 
Figure 2, right, were mounted in the turret allowing the simultaneous acquisition of an unsteady pressure field and 
optical wavefronts. 
 The cylindrical cylinder was tested in a test section with a back-step; this test section has a height jump, 
from 4” to 6”, at the location of the partially-protruding cylinder, see Figure 3 for schematics of the test section. The 
cylinder protrusion was 7.5 mm, relative to the upstream bottom tunnel wall. 
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Figure 2: Cylindrical turret with a conformal window: drawing (left) and picture (middle). Right picture: an 

additional conformal turret with embedded unsteady pressure sensors. 

  

   
Figure 3: Schematic of the optical set-up. 

 
 Optical measurements were performed with a high-speed Shack-Hartmann wavefront sensor, see Figure 3, 
for the optical set-up. The sensor sampling rate was 10 kHz with the spatial resolution of 54x32 subapertures, with 
54 subapertures in the streamwise direction. The camera was synchronized with a data acquisition system that 
sampled the 9 Kulite pressure sensors on the surface of the turret at 50kHz. Aero-optical measurements were 
collected at several elevation angles and different incoming transonic speeds. Figure 4 shows a schematic of the test 
configuration using the modified turret with unsteady pressure sensors (Kulites).   A Schlieren system was used to 
visualize the location and the strength of the local shock on top of the partially-protruding cylinder, as shown in 
Figure 5. The test section was also equipped with 8 static pressure ports to monitor the streamwise evolution of the 
flow speed in the test section. 
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Figure 4: Schematic of Simultaneous Pressure-Wavefront measurements 

  
Investigation of the flow around the partially-protruding cylinder had revealed that the flow features 

strongly depend on the incoming Mach number. Figure 5 shows time-averaged Schlieren images for several 
different Mach numbers [10]. The baseline shock dynamics were found to be quite sensitive to the local speed over 
the cylinder, displaying both unsteady and nearly-steady characteristics.  

 

 
Figure 5: Schlieren flow visualization for different flow regimes. The outline of optical aperture is labeled by 

a green line.  From [10]  

 The shock location and evolution at different flow regimes was measured using high-speed shadowgraph.  
Representative pictures of the shock at different times for the weak moving shock case are shown in Figure 6. In this 
flow regime, the shock forms upstream, gains the strength  and moves upstream over the aperture in almost periodic 
fashion. Very similar shock dynamics was reported over 3-D turret at transonic speeds [25]. For demonstration 
purposes, only the weak shock case was considered in the paper. 
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Figure 6: Shock temporal evolution for the weak moving shock case.  M = 0.65 (x/D = - 0.625), M = 0.83 (x/D 

= 0.625) 

A sample of synchronized pressure and wavefront data is shown in Figure 7. The middle of the aperture 
was located at the elevation angle of 105 degrees. The elevation angle is measured from the upstream direction. As 
the wavefronts were mostly spanwise-uniform, 1-dimensional, tilt-removed wavefronts slices in the streamwise 
direction were extracted and plotted as a function of the elevation angle and time in Figure 7, left plot. The presence 
of the shock, which creates the discontinuity in the wavefront, is labeled by a thick black arrow during one cycle. 
Consistent with shadowgraph snapshots in Figure 6, the shock-related wavefront discontinuity is formed around 110 
degrees, the wavefront discontinuity moves upstream and eventually disappears near 95 degrees.  Simultaneous 
time-evolution of surface pressure at 9 points are presented in Figure 7, left plot. It is clear that there is a very 
periodic behavior in both the pressure signals and the wavefront evolution. There is a small phase delay between 
pressures and  wavefronts, related to the inertia of the separated wake. The shock frequency is approximately 1kHz, 
so the chosen acquisition rate of 10kHz provides good temporal resolution for resolving the motion of the shock.  

Shock appears Shock gets stronger Wake thickens 

Shock moves upstream Wake retreats Shock disappears 
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Figure 7: Synchronized pressure (left) and 1-d slices of wavefront (right) measurements. The shock is labeled 

as a thick black arrow. 

 
IV. Results from Simulated Malley Probe/Wavefront Experiments 

The ANN estimation approach was applied to the transonic wavefront data in conjunction with two 
simulated Malley beams. The simulated Malley beam was obtained by extracting the wavefront slope from 
wavefront data at elevation angles of 95 degrees and 105 degrees. This was done to test the feasibility of this method 
before performing a more extensive experiment and analysis with simultaneous pressure and wavefront 
measurements.  

The neural network was trained over 4000 samples, and then it was used to estimate the next 100 using 
only the network itself and the input wavefront slopes, θ1 and θ2. The results of the estimation algorithm are shown 
in Figure 8. An overall reduction in OPDrms of 22% could be achieved using this method. An example of the 
reconstruction estimate is shown in Figure 9. A major challenge in using the Malley Probe as a training signal is that 
it is very noisy. Additionally, it is not clear from the analysis that there is a strong connection between the Malley 
Probe signals used and the highest-energy POD mode coefficients, which is critical to the performance of this type 
of estimation system.  If the estimation window is extended from 100 samples to something significantly larger, the 
estimation system will lose its “lock” on the phase of the signal and will actually amplify the effective OPD.  

The conclusion drawn from this preliminary analysis was that a cleaner input signal is needed to obtain a 
better estimation of the POD modes. The type of sensor chosen to provide a better training signal was a Kulite 
pressure sensor, and the results from that experiment are presented in the next section. 
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Figure 8: Modal coefficient estimation from Malley probe beams 
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Figure 9: Comparison of estimated and actual wavefronts 

 
V. Results from Simultaneous Pressure/Wavefront Experiment 

The first three POD modes of the synchronized pressure/wavefront data are shown in Figure 10. These 
three modes contain 93% of the energy in the flow. Therefore, a very high level of reduction in effective OPDrms is 
possible if these three modes are accurately estimated and optically controlled. 
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Figure 10: First three POD modes, containing 93% of the energy of the flow 

The LSE and ANN algorithms were tested for four different model orders to determine the effect of model 
order on accuracy of estimations. In the case of the ANN, the model order is the number of previous inputs used, 
called tap delays. In the case of LSE, the model order refers to the number of previous states that were estimated. 
Both models were trained over 1000 samples of data, and then used to estimate the next 1000 samples. The initial 
conditions for each estimator are always set to 0, which does have the effect of introducing start-up transients that 
last for a few cycles of shock motion. The locations of the pressure signals were at elevation angles of 94 degrees, 
101 degrees, and 108 degrees. These were chosen to be evenly spaced and cover a large part of the total aperture. 
The pressure training signals are shown in Figure 11. These signals are much cleaner than the Malley Probe signals, 
shown in Figure 8, top plot, and are related to the motion of the shock, as discussed in Figure 7. 
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Figure 11: Pressure training signals 

A simulation was performed to compare the baseline case with the Neural Network and Linear Stochastic 
Estimation methods for 1st, 2nd, 3rd, and 4th-Order models. The results of this simulation are shown in Figure 12. 
These results were obtained by subtracting the estimated wavefronts from the actual aberrations, and then 
normalizing these residual time-averaged values by the mean uncorrected level of OPDrms. The ANN accuracy 
increases by a total of 9% from the single-delay network to the 4-delay network. The LSE accuracy takes a much 
larger jump from the first-order model to the third-order model for an accuracy jump of almost 25%. The 4th-order 
LSE actually does a slightly worse job than the 3rd-order variant, meaning that it is near this point that the linear 
algorithm begins to become overtrained and loses some robustness to changing flow conditions. It would not be 
advisable to go significantly beyond a 4th-order method, as the algorithm will become much less robust to changing 
flow conditions as the order of the model increases. Generally, the order of the model will increase the accuracy but 
reduce the robustness. This assertion will be discussed further later in this section. 
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Figure 12: OPDrms Reduction Obtained in the Weak Shock Case 

Since the 3rd-order model gave good results for both the ANN and LSE cases, this topology was selected 
for individual analysis. The results of the coefficient estimation are shown in Figure 13. Tracking for the first two 
modes is very good in both algorithms. The majority of the energy in this transonic flow is contained in these first 
two modes, so a very large portion of the contribution to the overall reduction in OPDrms is obtained from these 
modes. Tracking the third mode proves to be the most challenging due to its more complex dynamics; however, the 
estimator still helps more than it hurts in this case. Naturally, tracking additional modes would help the overall 
reduction in optical aberration if these modes can be estimated accurately. However, since a significant reduction in 
the quality of the estimation is observed in the third mode, estimation of higher order modes would not be advisable 
in the current iteration of this algorithm.  
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Figure 13: LSE and ANN estimation of the first three POD modes using third-order estimation models 

The instantaneous reduction in OPDrms that could be achieved by imposing the conjugate of the estimated 
aberration on an outgoing beam is presented as a function of time in Figure 14. The mean reduction achieved for the 
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neural network estimator is 44%. The mean reduction for the linear stochastic estimator is 48%.  Over this window, 
it is important to note that the estimation model never makes the effective OPD significantly worse than the 
uncorrected case. Note also that there is an apparent floor of approximately 0.2 OPDrms,corrected/OPDrms,uncorrected (see 
Figure 14) beneath which the algorithm can no longer reduce the effective aberration. These low-OPD time intervals 
are related to times where the shock was not present over the turret. Therefore, only higher-order modes in the 
wavefront/pressure signals were present, which was beyond the first three POD modes that the algorithm attempts to 
estimate. A higher-order model would be needed to further reduce this lower threshold. 
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Figure 14: OPDrms reduction for 3rd order LSE and NN methods 

While the mean OPDrms improvement is very important for applications such as directed energy, laser-
based communications systems are more sensitive to short-interval dropouts stemming from spikes in the OPD. To 
measure this effect, the probability distribution functions for instantaneous OPDrms were computed for the baseline, 
NN-corrected, and LSE-corrected cases. The results are shown in Figure 15. The probability or frequency of large-
amplitude spikes is greatly reduced with all of the models. This would be highly beneficial to free-space laser 
communication systems since the frequency of large-OPD-related interruptions would be reduced, thus reducing the 
need to retransmit interrupted or corrupted data packets.   

Additional parameters were also investigated as part of this work. Besides varying the number of tap 
delays, the sensitivity of the estimation algorithms to the number of input signals and changing flow conditions was 
also studied. For the remainder of this section, we will discuss an analysis of the linear stochastic estimator since 
both the neural network and the linear stochastic estimator performed similarly and the mathematics are simpler in 
the LSE case. We will propose methods for improving both the ANN and the LSE approach. 

In the case of varying number of input signals, it may be seen from  that the signals in question are nearly 
linearly combinations of one another. From this, it can easily be shown that there is a manifold of B matrices in the 
LSE algorithm (to within a small threshold, in a least-squares sense) that adequately fit the training data, and the 
number of these matrices grows with number of additional inputs. It was found by trial-and-error that 2 inputs were 
sufficient to estimate the state of the flow, while adding more inputs did not significantly help or hurt the 
performance of the algorithm. In the case of the Malley probe, additional inputs actually hurt the performance of the 
algorithms due to the additional input of noise into the system.  

The robustness of the approach was also examined for both longer-time predictions as well as changing 
flow conditions. It was found that both approaches had difficulty tracking the modal coefficients for both longer 
quasi-steady runs as well as deliberate but incremental changes in the flow conditions. In the former case, the 
problem is not the issue of time per se, but rather natural changes occurring in the tunnel conditions due to slow 
drifts in incoming flow conditions. Shock dynamics are very sensitive to external pressure gradients, and it is 
difficult to control them tightly. It is clear from this that the robustness of the approach needs improvement. 
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Figure 15: Comparison of uncorrected and corrected probability density functions for both estimation 

methods for varying model orders. 

To better understand the robustness of the LSE model, it is helpful to consider the degenerate case of the 
model: the zeroth-order case, where the estimation of the coefficients is solely determined by the current-only input 
pressures and the B matrix in Eq. 12. If the POD coefficients could be well-approximated as a linear combination of 
the inputs, then in a sense the degenerate case would be the most “robust” since small frequency changes in the true 
POD coefficients would be physically reflected in the pressure inputs and therefore would also be well-
approximated by the POD coefficient estimation. However, the degenerate case is simply insufficient to capture the 
dynamics of the system and some past information is needed to predict it accurately. One can conclude from this 
argument that in general lower-order models will tend to be more robust, while higher-order models will tend to be 
more accurate. 

This conclusion, while a good guiding principle, is still an oversimplification of the true problem. As 
previously mentioned, there could be a manifold of solutions for the A and B matrices in Eq. 12 that give good 
estimations for well-behaved experimental data. The question is then clearly: is there a selection of A and B that 
compromises a small amount of accuracy for additional robustness? The solution could be provided by extending 
the model with a robustness parameter or by cross-training the model on multiple sets of data, each perturbed by 
some small change in the imposed pressure gradient.  

In order to include a robustness parameter, one could extend the linear stochastic estimator model given by 
Eq. 12 to be in state-space form as follows, 
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. [14] 

For convenience, we will denote the augmented A matrix as Aaug and the augmented B matrix as Baug. The 
advantage of performing this augmentation is that the eigenvalues and z-plane transfer functions can now be 
extracted from the system. The eigenvalues of Aaug give the dependency of future estimations based on past 
estimations. By minimizing the norm of the eigenvalues (with some weighting factor), the effect of prior estimations 
will decay more rapidly and more importance will be placed on the pressure inputs. This would improve the 
robustness of the estimator since it would respond more rapidly to frequency changes in the flow. Thus, the 
proposed improved objective function, Eq. 13, is 
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where Q is a weighting matrix and λAaug is a column vector of the eigenvalues of the augmented A matrix. The 
challenge with this approach would be determining an appropriate weighting matrix. It is proposed that future work 
not only attempt this modification to the model, but examine the effect of the weighting matrix and develop good 
practices for choosing it. 

In the case of the neural network-based approach, it is likely that the best option to increase robustness is to 
simply add additional sets of training data. Care should be taken to slightly vary flow parameters such as the 
amplitude and frequency of flow features contained in POD modes without fundamentally changing the flow 
regime. In an estimation system that uses either LSE or ANN, there is a domain of inputs within which the estimator 
should be stable and robust. If the flow conditions deviate outside this predefined region, an appropriate technique 
would be to retrain the model. Put another way, the models should be robust to nearly-linear changes in frequency 
and amplitude. Changes to flow topology should be handled by different training sets. 

One of the major drawbacks with “blackbox” approaches such as neural networks is that it is much more 
difficult to extract meaningful physics from the model. In the case of the LSE, it is easier to relate things like 
eigenvalues to physical phenomena. It is proposed that future work continue to develop the augmented LSE model 
in parallel with the neural network model. Additionally, future work should examine the viability of support vector 
machines (SVMs) to replace the neural network model. ANNs may suffer from a solution that is located at a local 
minimum; however, SVMs will attempt to find the globally optimal solution. Perhaps worse than the drawback itself 
is that it is not always apparent when a non-globally minimal solution has been found in the ANN. Therefore, for the 
purposes of verification alone it is recommended that support vector machines be studied further in the application 
of flow estimation and prediction. 

 
VI. Conclusions 

Shock-induced aero-optical aberrations around turrets at transonic flow regimes are a significant obstacle to 
the implementation of laser transmission devices on airborne platforms. In order to successfully transmit a beam 
from an airborne platform flying at transonic speeds, it is necessary to implement some form of aero-optic 
mitigation strategy. There are currently three general strategies for aero-optic mitigation: passive flow control, active 
flow control, and adaptive optics approaches. In this paper, we present methods that could be integrated into an 
adaptive-optics control loop. The methods rely on small-beam Malley probe or pressure inputs that are then directly 
related to output wavefronts. This is advantageous in environments where a return beam is not present for a closed-
loop adaptive optics sensor, in addition to avoiding the necessity to reconstruct complex wavefronts in real-time. 

In this paper, we have presented two approaches that are closely related to one another. These models take 
advantage of regular features in the flow combined with measurements of related physical quantities to estimate 
Proper Orthogonal Modes of the Optical Path Difference in the flow field. One method of estimation is based on 
Linear Stochastic Estimation and the other method is based on the usage of Artificial Neural Networks. Both models 
were trained to predict POD mode coefficients from external sensor inputs. Two types of sensor inputs were used: 
simulated Malley Probe beams and synchronized pressure inputs. The LSE approach reduced aero-optical 
aberrations by up to 48% and the ANN approach reduced the aberrations by up to 46%. It was found that the NN 
approach gave a better estimation for lower model order while the LSE approach was able to achieve the best overall 
performance. 

While the accuracy of the models for the given cases was good over a short temporal horizon, the models 
gave erroneous predictions as the flow field characteristics changed over time. It is proposed that future work focus 
on extending the LSE model to include a term in the minimization objective function to reduce the magnitude of the 
eigenvalues of the estimator. The effect of this change will be to reduce dependency on past observations and place 
more weight on input measurements, thereby speeding up the response of the system to changing flow conditions. It 
is also proposed that the ANN be trained with several slightly dissimilar sets of data, reducing overall accuracy of 
the model but allowing for some variation in frequency and amplitude of the POD coefficients. Finally, it is 
proposed that Support Vector Machines be investigated as an alternative to ANNs, as they do not suffer from the 
problem of giving locally but not globally optimal solutions. 
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