
Statement of Teaching Philosophy
Shreya Kumar

shreyak@mtu.edu

I believe in empowering people for success by facilitating their journey to achieve the right skills. For CS
undergraduate students, that empowerment may come from being able to create things they envision
being used in the world and being able to visualize themselves as viable contributors to society. For senior
citizens, that empowerment may come from being less afraid of technology, being less embarrassed to ask
questions and explore, and from feeling more independent. For high schoolers and middle-schoolers, that
empowerment may come from imagining positive possibilities for their future with computing and realizing
that seemingly esoteric knowledge and skills are all achievable. In teaching, I have found that I am able to
combine my enthusiasm for computing and my love for guiding people to find their own answers. I enjoy
helping others realize that technology is for them to use as a tool, instead of having to struggle to find a
way around it.

My teaching philosophy is guided by three core principles :

- an understanding that students learn better when they feel engaged—both with the instructor and
their peers,

- an understanding that there is no “one size fits all” pedagogy, and that it is important that one keep
growing pedagogically,

- a need to maintain an open channel of communication, to assure students that there is no
challenge that cannot be discussed and resolved through active, timely communication.

All the courses I teach are designed with a critical pedagogy that recognizes that students learn better
when they understand the real world impact of their work and their field.

I teach the team software project and introductory-level CS courses. These core courses allow students to
acquire the technical and practical skills they need to succeed in industry and, in turn, for the industry to
succeed. From my experience in industry, working in rigorously Agile environments, I realize the need for
well-rounded skills in new graduates with an understanding of the value of software process through
authentic exposure. Even working in a CMMI Level 5 Agile software process, I found that there was room
for more rigor and clarity. This inspired my Ph.D. research which has two foci—to understand how software
engineering communities sustain themselves, and improve the integration an authentic software
development experience in the computing curricula in a way that is relevant to the field.

In the Team Software Project course, I have integrated Process Oriented Guided Inquiry Learning (POGIL)
based activities which uses the inverted classroom format [1, 2, 3]. The students perform their reading as
homework; in the classroom, they work in groups where each student has a specific role and the group
answers timed questions structured to guide them towards reflection and exploration. In designing these
activities, we learn from and join the growing movement of CS-POGIL [4]. I also encourage and guide
students to choose a project topic for a specific type of user and incorporate the notion of fulfilling a need
or providing a service.

The POGIL based activities are part of a larger scaffolding where the students are guided to examine first
some common software development industry practices, then excerpts from the experiences of other
computer science student teams, followed by real-world examples of communication in open source

software development. The students then reflect on their own practices as part of sprint retrospectives in
the structure of Scrum. Student teams compare their practices with other teams through interviews with
other student teams. Teams also interview real/mock software users to increase their understanding of user
requirements. These practices help students bridge the transition from programmers to well-rounded
software developers.

For teaching programming-centric courses, I believe that creating assignments that serve a real-world
purpose and relate to real world users—especially users with different expectations than ourselves— helps
relate value to the material being taught. I have created assignments where young student programmers
are asked to first create a small application for other young users and then create something equally useful
for the elderly, combining my passion for working with both demographics.

I have helped design and teach summer courses to attract more young women to computing by giving
them a realistic picture of the field [5]. The course combined mobile app programming sessions interlaced
with real-time interviews of successful female computing professionals, interactive computing lab demos
and introductory lectures on different areas of computing, linking back to the notion of real-world impact.

In teaching vastly different types of learners like CS undergraduate students, middle and high school
students and senior citizens learning how to use computers, I have had the opportunity to work with
different types of pedagogical techniques and resources. In the last few years, I have become quite excited
about new pedagogical paradigms that mix traditional classroom methods with new techniques. I have
regularly participated in campus wide discussions on a move to more blended forms of learning with the
Center for Teaching and Learning. With my research group, I have explored the option of hosting a
connectivist MOOC on digital literacy for the elderly. However, I do still value the traditional classroom
lecture approach. I believe that the flipped classroom model works well for specific types of material and
certain types of learning styles and more rigorous, traditional settings work for others.

References

1. Kumar, Shreya and Charles Wallace, “Instruction in software project communication through
guided inquiry and reflection,” in ​proceedings of the IEEE Frontiers in Education Conference​, IEEE,
2014.

2. Wallace, Charles and Shreya Kumar, "Engaging Software Engineering Students in Communication
Design through a Pattern Language" at the International Writing Across the Curriculum
Conference, Minneapolis, MN, June 2014.

3. Kumar, Shreya and Charles Wallace, “A tale of two projects: A pattern based comparison of
communication strategies in student software development,” in ​proceedings of the 2013 IEEE
Frontiers in Education Conference​, 2013, pp. 1844–1850.

4. Kussmaul, Clifton, Helen Hu, and Martin Lang, "Using POGIL to help students discover CS
concepts and develop process skills." in ​proceedings of the 44th ACM technical symposium on
Computer science education​, ACM, 2013.

5. Kumar, Shreya and Linda Ott, "Encouraging Talented High School Girls toward a Career in
Computing through a Broader Understanding of the Field", in ​proceedings of the 121st ASEE
Annual Conference​, June 2014.

