Homework set # 5
Due on 2/20

0. The following problems from Artin “Algebra” edition 2: 15.8.1; 16.1.1 parts a,b,c

1. (1) Let \(\phi : F \rightarrow F' \) be an isomorphism of fields. Let \(f(x) \in F[x] \) be a polynomial and let \(f'(x) = \phi(f(x)) \) (here we are just applying \(\phi \) to the coefficients of \(f(x) \)). Let \(E \) be a splitting field for \(f(x) \) over \(F \) and let \(E' \) be a splitting field for \(f'(x) \) over \(F' \). Prove that the isomorphism \(\phi \) extends to an isomorphism \(\sigma : E \rightarrow E' \) (so in other words that \(\sigma \) restricted to \(F \) is just \(\phi \)). (Hint: first consider what happens when you adjoin one root of \(f(x) \) to \(F \) and one root of \(f'(x) \) to \(F' \), it might also be helpful to think of adjoining one root as a quotient of the polynomial ring).

(2) Using the first part, prove that any two splitting fields of a polynomial \(f(x) \in F[x] \) over a field \(F \) are isomorphic.

2. (1) For every non constant monic polynomial \(f \in F[x] \) where \(F \) is a field, let \(x_f \) denote a new variable in the polynomial ring \(R_f = F[\ldots, x_f, \ldots] \) (i.e. there will be infinitely many variables in this new polynomial ring). Now let \(I \) be the ideal in \(R_f \) generated by the polynomials \(f(x_f) \). Prove that \(I \) is a proper ideal (i.e. that \(I \neq R_f \)). (Hint: If it were proper then \(1 \in I \) meaning that there would be a relation \(g_1 f_1(x_{f_1}) + \cdots g_n f_n(x_{f_n}) = 1 \) among finitely many of the \(f(x_f) \)'s. Now what would happen to this relation if you set each \(x_{f_i} \) equal to a root of \(f_i \) in some extension field of \(F \) and set the remaining variables showing up in the \(g_i \)'s to 0?)

(2) Observe that if \(I \) is not equal to \(R_f \) then \(I \) is contained in some maximal ideal \(M \) of \(R_f \). Prove that the field \(R_f/M \) contains a root of every non constant monic polynomial \(f \in F[x] \).

(3) Using the above work, prove that for any field \(F \) there exists an algebraically closed field \(K \) containing \(F \). (Hint: It might be useful to use the fact that a union of fields is a field (even a countable union)).