MATE	H 20550: Calculus III	Name:
Final	December 12, 2011 I	nstructor and Section:
As a member of the Notre Dame community, I will not participate in or tolerate academic dishonesty.		
Please	sign	
Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 20 multiple choice questions worth 7.5 points each for a total of 150 points.		
You ma	ay use a calculator if you wish.	
	1. a b c d e	11. a b c d e
	2. a b c d e	12. a b c d e
	3. a b c d e	13. a b c d e
	4. a b c d e	14. a b c d e
	5. a b c d e	15. a b c d e
	6. a b c d e	16. a b c d e
	7. a b c d e	17. a b c d e
	8. a b c d e	18. a b c d e
	9. a b c d e	19. a b c d e

20. a

 $\begin{array}{|c|c|c|c|c|} \hline b & c & d & e \\ \hline \end{array}$

10. a

1. Use the change of variables, $x = \frac{1}{3}u + \frac{2}{3}v$ and $y = \frac{2}{3}u + \frac{1}{3}v$, to compute the integral $\iint_{R} 12(2x - y)(x - 2y)dA,$

where R is the parallelogram region with vertices (0,0), (2,1), (1,2), (3,3).

- (a) -18
- (b) -81
- (c) 81
- (d) 18
- (e) -112

- 2. Find the normal component of acceleration for the curve $\mathbf{r}(t) = t\mathbf{i} + 2t\mathbf{j} + t^2\mathbf{k}$.
- (a) $\sqrt{4-t^2}$ (b) $\frac{\langle 1, 2, 2t \rangle}{\sqrt{5+4t^2}}$ (c) $\frac{2\sqrt{5}}{\sqrt{5+4t^2}}$ (d) $\frac{4t}{\sqrt{5+4t^2}}$ (e) $\langle 4, -2, 0 \rangle$

- 3. Find $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = \langle x + y, y x, x z \rangle$ and S is the surface of the sphere of radius 3 centered at the origin with the outward normal. (Hint: if you use the correct theorem this problem is very simple.)
 - (a) 48
- (b) 0
- (c) 36π
- (d) 12π
- (e) 118π

- 4. Evaluate $\int_C x^2 + y^2 z^2 ds$ where C is the helix $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$ with initial point (1,0,0) and terminal point $(-1,0,\pi)$

 - (a) $\frac{\pi^3}{2}$ (b) $\sqrt{2}\left(\pi \frac{\pi^3}{3}\right)$ (c) $\pi \frac{\pi^3}{3}$ (d) $\sqrt{2}\pi$ (e) $\frac{1}{6}(3\pi \pi^3)$

- 4
- 5. Find a vector along which the function

$$f(x,y) = (x^2 + x)y$$

is neither increasing nor decreasing from the point (1,1).

- (a) $\langle 3, -2 \rangle$ (b) $\langle 2, -3 \rangle$ (c) $\langle 2, 3 \rangle$
- (d) $\langle \frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}} \rangle$ (e) $\langle \frac{3}{\sqrt{5}}, -\frac{2}{\sqrt{5}} \rangle$

- 6. Find $\iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$ where $\mathbf{F} = \langle yz y, 2xz + x, e^{xyz} \rangle$ and S is the surface of $x^2 + y^2 + \frac{9}{4}z^2 = 4$ for $z \ge 0$ with upward normal.
 - (a) 0
- (b) 8π
- (c) 2π
- (d) 4π (e) -4π

7. Suppose a dragon is flying along the helix $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$ while subject to the force field ${\bf F}(x,y,z) = 2xze^{x^2+y^2}{\bf i} + 2yze^{x^2+y^2}{\bf j} + e^{x^2+y^2}{\bf k}.$

What is the work done by the force field on the dragon from t=0 to $t=4\pi$?

- (a) 0
- (b) $\pi(4e-1)$ (c) 4π
- (d) e 1
- (e) $4\pi e$

- 8. Find $\iint_S z \, dS$ where S is the surface $x^2 + y^2 + z^2 = 1$ above the xy-plane.
 - (a) -1
- (b) 0
- (c) π (d) $\frac{1}{2}$
- (e) 2π

- 9. Find the tangent plane to the surface $\mathbf{r}(u,v) = \langle uv, u+2v, 2u-v \rangle$ when u=v=1.
 - (a) x + 2y z = 6
- (b) $\frac{x-1}{-5} = \frac{y-3}{3} = \frac{z-1}{1}$ (c) -5x + 3y + z = 5

- (d) 2x + 3y = 4
- (e) -5x + 3y + z = 1

- 10. Find the shortest distance of the surface xyz = 1 to the origin.
 - (a) $(\frac{1}{2}, 1, 2)$ (b) $2\sqrt{2}$ (c) $\frac{\sqrt{21}}{2}$ (d) $\sqrt{3}$

- (e) 3

11. Which of the following is an equation for the osculating plane of the curve

$$\mathbf{r}(t) = \langle \cos t, 1 + t^2, t \rangle$$

at t = 0? (That is, at the point (1, 1, 0).)

(a)
$$x - y + 1 = 0$$

(b)
$$2x + y - 3 = 0$$

(c)
$$x - 2y + 1 = 0$$

(d)
$$2x + y + z - 3 = 0$$
 (e) $x + y = 0$

(e)
$$x + y = 0$$

12. Which of the following triple integrals represents the volume of the region inside both the cylinder $x^2 + y^2 = 4$ and the sphere $x^2 + y^2 + z^2 = 9$?

(a)
$$\int_{-2}^{2} \int_{-2}^{2} \int_{-3}^{3} 2\sqrt{9 - x^2 - y^2} \, dz \, dy \, dx$$

(b)
$$\int_0^{2\pi} \int_0^{\pi} \int_0^3 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

(c)
$$\int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{\sqrt{9-x^2-y^2}} dz \, dy \, dx$$

(d)
$$\int_0^{2\pi} \int_0^3 \int_{r^2-4}^{4-r^2} r \, dz \, dr \, d\theta$$

(e)
$$\int_0^{2\pi} \int_0^2 \int_{-\sqrt{9-r^2}}^{\sqrt{9-r^2}} r \, dz \, dr \, d\theta$$

- 13. Find $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = \langle x, 3y^2, z \rangle$ and S is the surface of the cylinder $4x^2 + z^2 = 4, 0 \le y \le 1$, with outward normal.
 - (a) 0
- (b) -2π
- (c) 4π
- (d) 2π
- (e) 8π

14. Find $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle z, x, 2y \rangle$ and C is the curve given by the intersection of the plane x + 2y + z = 2 with the coordinate planes in a counterclockwise direction when viewed from above.

(a) -4

(b) 6

(c) 5

(d) 4

(e) 0

15. Find the absolute maximum and minimum of the function

$$f(x,y) = (x-1)^2 + y^2$$

on the region

$$D = \left\{ (x, y) : \frac{x^2}{4} + y^2 \le 1 \right\}$$

- (a) Absolute minimum 0; no absolute maximum.
- (b) Absolute minimum $\frac{2}{3}$; absolute maximum 9.
- (c) Absolute minimum 0; absolute maximum $\frac{2}{3}$.
- (d) Absolute minimum 0; absolute maximum 9.
- (e) Absolute minimum $\frac{2}{3}$; absolute maximum 1.

16. Find the rate of change of the function

$$f(x, y, z) = xy^2 e^{x-z}$$

at the point (2,1,2) in the direction of the vector (0,1,1).

- (a) $\sqrt{2}$
- (b) 4
- (c) $3\sqrt{2}$
- (d) 2
- (e) 5

- 17. Find the projection $\text{proj}_{\mathbf{a}} \mathbf{b}$ of $\mathbf{b} = \langle 4, 2, 5 \rangle$ onto $\mathbf{a} = \langle 1, -1, 2 \rangle$.

- $\text{(a) } \langle \frac{16}{15}, \frac{8}{15}, \frac{4}{3} \rangle \qquad \text{(b) } \langle \frac{1}{2}, -\frac{1}{2}, 1 \rangle \qquad \text{(c) } \langle 2, -2, 4 \rangle \qquad \qquad \text{(d) } \langle \frac{4}{15}, -\frac{4}{15}, \frac{8}{15} \rangle \qquad \text{(e) } 2$

- 18. The cylinder $x^2 + y^2 = 4$ intersects the plane x + y + z = 1 in an ellipse. Find an equation of the tangent line to the ellipse at (2,0,-1).

 - (a) $\mathbf{r}(t) = \langle 0, -t, t \rangle$ (b) $\mathbf{r}(t) = \langle 2 + 4t, 0, -1 + t \rangle$ (c) $x = 2, \frac{y}{4} = z$
 - (d) $\frac{x-2}{4} = z + 1, y = 0$ (e) $\mathbf{r}(t) = \langle 2, -4t, -1 + 4t \rangle$

- 19. Find the surface area of the part of the plane 3x + 2y + z = 6 in the first octant (so $x \ge 0, y \ge 0, z \ge 0$).
 - (a) $3\sqrt{13}$
- (b) 18
- (c) 12
- (d) $3\sqrt{14}$ (e) $3\sqrt{15}$

20. Consider the function $f(x,y) = x \sin(y^2)$. Which of the following is true of the point (0,0)?

- (a) (0,0) is a critical point of f, but the Second Derivative Test is inconclusive.
- (b) (0,0) is not a critical point of f.
- (c) (0,0) is a local maximum of f.
- (d) (0,0) is a saddle point of f.
- (e) (0,0) is a local minimum of f.