Name:

Instructor:

Math 20550, Practice Exam 1 September 23, 2014

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(a)	(b)	(c)	(d)	(e)	
2.	(a)	(b)	(c)	(d)	(e)	
3.	(a)	(b)	(c)	(d)	(e)	
4.	(a)	(b)	(c)	(d)	(e)	
5.	(a)	(b)	(c)	(d)	(e)	
6.	(a)	(b)	(c)	(d)	(e)	
7.	(a)	(b)	(c)	(d)	(e)	
8.	(a)	(b)	(c)	(d)	(e)	
9.	(a)	(b)	(c)	(d)	(e)	
10.	(a)	(b)	(c)	(d)	(e)	

Please do NOT	write in this bo	х.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total		

Name: ______ Instructor: ______

Multiple Choice

1.(6 pts) Find symmetric equations of the line L passing through the point (2, -5, 1) and perpendicular to the plane x + 3y - z = 9.

(a)
$$\frac{x-2}{1} = \frac{y+5}{3} = \frac{z-1}{-1}$$
 (b) $2(x-1) = (-5)(y-3) = z+1$
(c) $(x-2) + 3(y-3) - (z-1) = 9$ (d) $\frac{x-1}{2} = \frac{y-3}{-5} = \frac{z+1}{1} = 9$
(e) $\frac{x-1}{2} = \frac{y-3}{-5} = \frac{z+1}{1}$

2.(6 pts) The two curves below intersect at the point $(1, 4, -1) = \mathbf{r}_1(0) = \mathbf{r}_2(1)$. Find the cosine of the angle of intersection

$$\mathbf{r}_1(t) = e^{3t}\mathbf{i} + 4\sin\left(t + \frac{\pi}{2}\right)\mathbf{j} + (t^2 - 1)\mathbf{k}$$
$$\mathbf{r}_2(t) = t\mathbf{i} + 4\mathbf{j} + (t^2 - 2)\mathbf{k}$$

(a) 0 (b) 3 (c)
$$\frac{1}{\sqrt{5}}$$
 (d) $\frac{1}{5}$ (e) $\frac{e}{\sqrt{e^2 + 4}}$

Name: ______ Instructor: ______

3.(6 pts) Find the projection of the vector $\langle 1, -1, 5 \rangle$ onto the vector $\langle 2, 1, 4 \rangle$

(a)
$$\frac{1}{5}\langle 2, 1, 5 \rangle$$
 (b) $\langle 6, 3, 12 \rangle$ (c) $\langle 1, -1, 5 \rangle$ (d) $\langle 3, -3, 15 \rangle$ (e) $\langle 2, 1, 4 \rangle$

4.(6 pts) Find
$$\int \mathbf{r}(x) dx$$
 where

$$\mathbf{r}(x) = (\sec^2 x)\mathbf{i} + e^x\mathbf{k}$$

Recall: $\int \sec^2 x \, dx = \tan x + C.$

- (a) $(\tan x + C_1)\mathbf{i} + C_2\mathbf{j} + (e^x + C_3)\mathbf{k}$ (b) $\tan x + e^x + C$
- (c) $(\tan x)\mathbf{i} + e^x\mathbf{k}$
- (d) $(\tan x + C_1)\mathbf{i} + (e^x + C_2)\mathbf{k}$
- (e) $(\tan x + C)\mathbf{i} + C\mathbf{j} + (e^x + C)\mathbf{k}$

5.(6 pts) Find the volume of the parallelepiped spanned by the three vectors $\langle 1, 2, -1 \rangle$, $\langle 0, 1, 2 \rangle$ and $\langle 3, 2, 1 \rangle$.

(a) $9\sqrt{2}$ (b) $2\sqrt{3}$ (c) 0 (d) 12 (e) $3\sqrt{2}$

6.(6 pts) Find the area of the triangle formed by the three points (1, 0, 1), (2, 0, 2) and (3, 3, 3).

(a) 2.2 (b) 0 (c)
$$\frac{3}{2}\sqrt{2}$$
 (d) 4 (e) $\frac{\sqrt{3}}{2}$

Name:	
Instructor:	

7.(6 pts) Which of the following is a contour map for $f(x, y) = \frac{xy}{x^2 + 1}$?

8.(6 pts) An particle is travelling and has position at time t given by $\mathbf{r}(t) = \left\langle \frac{2}{3}t^3, \frac{\sqrt{12}}{2}t^2, 3t \right\rangle$. How far does it travel from time t = 0 to time t = 3.

(a) 56 (b) 27 (c) 14 (d) 96 (e) 48

9.(6 pts) Find the radius of the sphere given by the equation
$$x^2 - 8x + y^2 + 2y + z^2 - 10z + 30 = 0.$$

(a) 6 (b) $\sqrt{10}$ (c) 12 (d) $2\sqrt{3}$ (e) $\sqrt{42}$

10.(6 pts) Below are five expressions involving two vectors \mathbf{a} and \mathbf{b} . All of them are always equal to either 0 (the scalar) or $\mathbf{0}$ (the vector) except one. Which one can be nonzero?

- (a) $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{a})$ (b) $(\mathbf{a} \times \mathbf{b}) (\mathbf{b} \times \mathbf{a})$ (c) $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{b})$
- (d) $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{a})$ (e) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{a})$

Partial Credit You must show your work on the partial credit problems to receive credit!

11.(12 pts.) Consider the curve

 $\mathbf{r}(t) = \sin(2t)\mathbf{i} + t\mathbf{j} - \cos(2t)\mathbf{k}.$

Give equations for the normal plane and the osculating plane at t = 0.

Name: _____

Instructor: _____

12.(12 pts.) Are the lines $\langle 3, -2, -1 \rangle + t \langle 2, 1, 1 \rangle$ and $\langle 7, 5, 6 \rangle + t \langle 1, 3, 3 \rangle$ parallel, intersecting, or skew? If intersecting, find a point of intersection.

13.(12 pts.) Suppose the curve C has parametric equations:

$$x(t) = t^3 - t$$
, $y(t) = 1 - 2\sqrt{t}$, $z(t) = t^2 + t$

Find the parametric equation for the tangent line to the above curve C at the point P = (0, -1, 2).