## Multiple Choice

1.(6 pts) Find symmetric equations of the line L passing through the point (2, -5, 1) and perpendicular to the plane x + 3y - z = 9.

(a) 
$$\frac{x-2}{1} = \frac{y+5}{3} = \frac{z-1}{-1}$$
 (b)  $2(x-1) = (-5)(y-3) = z+1$   
(c)  $(x-2) + 3(y-3) - (z-1) = 9$  (d)  $\frac{x-1}{2} = \frac{y-3}{-5} = \frac{z+1}{1} = 9$   
(e)  $\frac{x-1}{2} = \frac{y-3}{-5} = \frac{z+1}{1}$ 

**2.**(6 pts) The two curves below intersect at the point  $(1, 4, -1) = \mathbf{r}_1(0) = \mathbf{r}_2(1)$ . Find the cosine of the angle of intersection

$$\mathbf{r}_1(t) = e^{3t}\mathbf{i} + 4\sin\left(t + \frac{\pi}{2}\right)\mathbf{j} + (t^2 - 1)\mathbf{k}$$
$$\mathbf{r}_2(t) = t\mathbf{i} + 4\mathbf{j} + (t^2 - 2)\mathbf{k}$$

(a) 0 (b) 3 (c) 
$$\frac{1}{\sqrt{5}}$$
 (d)  $\frac{1}{5}$  (e)  $\frac{e}{\sqrt{e^2+4}}$ 

**3.**(6 pts) Find the projection of the vector  $\langle 1, -1, 5 \rangle$  onto the vector  $\langle 2, 1, 4 \rangle$ 

(a) 
$$\frac{1}{5}\langle 2, 1, 5 \rangle$$
 (b)  $\langle 6, 3, 12 \rangle$  (c)  $\langle 1, -1, 5 \rangle$  (d)  $\langle 3, -3, 15 \rangle$  (e)  $\langle 2, 1, 4 \rangle$ 

**4.**(6 pts) Find  $\int \mathbf{r}(x) dx$  where

$$\mathbf{r}(x) = (\sec^2 x)\mathbf{i} + e^x\mathbf{k}$$

**Recall:**  $\int \sec^2 x \, dx = \tan x + C.$ 

- (a)  $(\tan x + C_1)\mathbf{i} + C_2\mathbf{j} + (e^x + C_3)\mathbf{k}$
- (c)  $(\tan x)\mathbf{i} + e^x\mathbf{k}$
- (e)  $(\tan x + C)\mathbf{i} + C\mathbf{j} + (e^x + C)\mathbf{k}$
- (b)  $\tan x + e^x + C$ 
  - (d)  $(\tan x + C_1)\mathbf{i} + (e^x + C_2)\mathbf{k}$

**5.**(6 pts) Find the volume of the parallelepiped spanned by the three vectors  $\langle 1, 2, -1 \rangle$ ,  $\langle 0, 1, 2 \rangle$  and  $\langle 3, 2, 1 \rangle$ .

(a)  $9\sqrt{2}$  (b)  $2\sqrt{3}$  (c) 0 (d) 12 (e)  $3\sqrt{2}$ 

**6.**(6 pts) Find the area of the triangle formed by the three points (1, 0, 1), (2, 0, 2) and (3, 3, 3).

(a) 2.2 (b) 0 (c) 
$$\frac{3}{2}\sqrt{2}$$
 (d) 4 (e)  $\frac{\sqrt{3}}{2}$ 

**7.**(6 pts) Which of the following is a contour map for  $f(x, y) = \frac{xy}{x^2 + 1}$ ?







**8.**(6 pts) A particle is travelling and has position at time t given by  $\mathbf{r}(t) = \left\langle \frac{2}{3}t^3, \frac{\sqrt{12}}{2}t^2, 3t \right\rangle$ . How far does it travel from time t = 0 to time t = 3.

(a) 56 (b) 27 (c) 14 (d) 96 (e) 48

**9.**(6 pts) Find the radius of the sphere given by the equation  $x^2 - 8x + y^2 + 2y + z^2 - 10z + 30 = 0.$ 

(a) 6 (b)  $\sqrt{10}$  (c) 12 (d)  $2\sqrt{3}$  (e)  $\sqrt{42}$ 

10.(6 pts) Below are five expressions involving two vectors  $\mathbf{a}$  and  $\mathbf{b}$ . All of them are always equal to either 0 (the scalar) or  $\mathbf{0}$  (the vector) except one. Which one can be nonzero?

- (a)  $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{a})$  (b)  $(\mathbf{a} \times \mathbf{b}) (\mathbf{b} \times \mathbf{a})$  (c)  $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{b})$
- (d)  $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{a})$  (e)  $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{a})$

## Partial Credit

You must show your work on the partial credit problems to receive credit!

**11.**(12 pts.) Consider the curve

$$\mathbf{r}(t) = \sin(2t)\mathbf{i} + t\mathbf{j} - \cos(2t)\mathbf{k}.$$

Give equations for the normal plane and the osculating plane at t = 0.

**12.**(12 pts.) Are the lines  $\langle 3, -2, -1 \rangle + t \langle 2, 1, 1 \rangle$  and  $\langle 7, 5, 6 \rangle + t \langle 1, 3, 3 \rangle$  parallel, intersecting, or skew? If intersecting, find a point of intersection.

**13.**(12 pts.) Suppose the curve C has parametric equations:

$$x(t) = t^3 - t$$
,  $y(t) = 1 - 2\sqrt{t}$ ,  $z(t) = t^2 + t$ 

Find the parametric equation for the tangent line to the above curve C at the point P = (0, -1, 2).

Name: \_\_\_\_\_

Instructor: <u>ANSWERS</u>

## Math 20550, Practice Exam 1 September 23, 2014

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 0 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

| PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! |         |         |         |         |         |  |
|---------------------------------------------------|---------|---------|---------|---------|---------|--|
| 1.                                                | (ullet) | (b)     | (c)     | (d)     | (e)     |  |
| 2.                                                | (a)     | (b)     | (ullet) | (d)     | (e)     |  |
| 3.                                                | (a)     | (b)     | (c)     | (d)     | (ullet) |  |
| 4.                                                | (ullet) | (b)     | (c)     | (d)     | (e)     |  |
| 5.                                                | (a)     | (b)     | (c)     | (ullet) | (e)     |  |
| 6.                                                | (a)     | (b)     | (ullet) | (d)     | (e)     |  |
| 7.                                                | (a)     | (b)     | (c)     | (ullet) | (e)     |  |
| 8.                                                | (a)     | (ullet) | (c)     | (d)     | (e)     |  |
| 9.                                                | (a)     | (b)     | (c)     | (ullet) | (e)     |  |
| 10.                                               | (a)     | (ullet) | (c)     | (d)     | (e)     |  |
|                                                   |         |         |         |         |         |  |

| Please do NOT   | write in this box. |
|-----------------|--------------------|
| Multiple Choice |                    |
| 11.             |                    |
| 12.             |                    |
| 13.             |                    |
| Extra Points.   | _4                 |
| Total           |                    |

**1.** The symmetric equations of line are given by  $(x-x_0)/a = (y-y_0)/b = (z-z_0)/c$ , where  $(x_0, y_0, z_0)$  is a point on the line and  $\langle a, b, c \rangle$  is a direction vector. Since *L* is perpendicular to the plane x + 3y - z = 9, then we can take the normal to the plane as the direction vector, this is,  $\langle 1, 3, -1 \rangle$  is a direction vector of *L*. Therefore, the symmetric equations are  $\frac{x-2}{1} = \frac{y+5}{3} = \frac{z-1}{-1}$ .

 $\mathbf{2.}\mathbf{Note}$ 

$$\mathbf{r}_{1}'(t) = \left\langle 3e^{3t}, 4\cos\left(t + \frac{\pi}{2}\right), 2t \right\rangle$$
$$\mathbf{r}_{2}'(t) = \left\langle 1, 0, 2t \right\rangle$$

To compute the angle of intersection we find  $\mathbf{r}'_1(0) = \langle 3, 0, 0 \rangle \ \mathbf{r}'_2(1) = \langle 1, 0, 2 \rangle$  so that  $\frac{\cos \theta = \frac{\mathbf{r}'_1(0) \cdot \mathbf{r}'_2(1)}{|\mathbf{r}'_1(0)||\mathbf{r}'_2(1)|} = \frac{3}{3\sqrt{5}} = \frac{1}{\sqrt{5}}.$ 

3.

$$\operatorname{proj}_{\langle 2,1,4\rangle}\left(\langle 1,-1,5\rangle\right) = \frac{\langle 2,1,4\rangle \cdot \langle 1,-1,5\rangle}{\langle 2,1,4\rangle \cdot \langle 2,1,4\rangle} \langle 2,1,4\rangle = \frac{21}{21} \langle 2,1,4\rangle = \langle 2,1,4\rangle$$

4.

$$\int \mathbf{r}(x)dx = \int \left( (\sec^2 x)\mathbf{i} + e^x \mathbf{k} \right) dx$$
$$= \left( \int \sec^2 x dx \right) \mathbf{i} + \left( \int 0 dx \right) \mathbf{j} + \left( \int e^x dx \right) \mathbf{k}$$
$$= (\tan x + C_1) \mathbf{i} + C_2 \mathbf{j} + (e^x + C_3) \mathbf{k}$$

5. Answer is the absolute value of the triple product

$$\begin{vmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 3 & 2 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} - (2) \cdot \begin{vmatrix} 0 & 2 \\ 3 & 1 \end{vmatrix} + -1 \cdot \begin{vmatrix} 0 & 1 \\ 3 & 2 \end{vmatrix} = -3 + 12 + 3 = 12$$

**6.**Two vectors which form two sides of the triangle are  $\langle 1, 0, 1 \rangle = \langle 2, 0, 2 \rangle - \langle 1, 0, 1 \rangle$  and  $\langle 2, 3, 2 \rangle = \langle 3, 3, 3 \rangle - \langle 1, 0, 1 \rangle$ . Hence

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 1 \\ 2 & 3 & 2 \end{vmatrix} = \langle 3 - 0, -(2 - 2), 3 - 0 \rangle = \langle 3, 0, 3 \rangle$$

The area of the parallelogram is  $|\langle 3, 0, 3 \rangle| = \sqrt{9+0+9} = 3\sqrt{2}$  and the area of the triangle is half this.

7. The level curves are given by  $f(x, y) = \frac{xy}{x^2 + 1} = c$  where c is a constant. Solving for y we get

$$y = \frac{c}{x} + cx$$

So each level curve for  $c \neq 0$  has a vertical asymptote at x = 0. Of the five given curves, that only leaves (a) and (d) as the possible correct answers. Also notice that for each x, there is only one corresponding value of y i.e. y is a well defined function of x. So each level curve must pass the vertical test. But clearly there are curves in (a) which fail this. Hence the correct answer is (d).

 $\mathbf{r}'(t) = \langle 2t^2, \sqrt{12}t, 3 \rangle$ . So the distance travelled is given by

$$L(0,3) = \int_0^3 |\mathbf{r}'(t)| \, dt = \int_0^3 \sqrt{4t^4 + 12t^2 + 9} \, dt = \int_0^3 (2t^2 + 3) \, dt = 27.$$

For the penultimate equality, notice that  $4t^4 + 12t^2 + 9 = (2t^2 + 3)^2$ . 9.Completing squares  $x^2 + 8x = (x+4)^2 - 16$ ,  $y^2 + 2y = (y+1)^2 - 1$ ,  $z^2 - 10z = (z-5)^2 - 25$ . So

$$x^{2} - 8x + y^{2} + 2y + z^{2} - 10z + 30 = 0$$
  

$$\Leftrightarrow (x+4)^{2} + (y+1)^{2} + (z-5)^{2} - 16 - 1 - 25 + 30 = 0$$
  

$$\Leftrightarrow (x+4)^{2} + (y+1)^{2} + (z-5)^{2} = 12$$

So radius is  $\sqrt{12} = 2\sqrt{3}$ .

**10.**(a) is always zero since  $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$  and cross product of parallel vectors is zero. (b) is zero if and only if  $\mathbf{a} \times \mathbf{b} = 0$ . So (b) can be non zero.

(c) is always zero since  $\mathbf{a} \times \mathbf{b}$  is perpendicular to both  $\mathbf{a}$  and  $\mathbf{b}$  and hence perpendicular to  $\mathbf{a} + \mathbf{b}$ .

(d) is always zero since  $\mathbf{a} \times \mathbf{a} = 0$  for any vector  $\mathbf{a}$ .

(e) is always zero since  $\mathbf{a}$  is perpendicular to  $\mathbf{b} \times \mathbf{a}$ .

**11.**At t = 0,  $\mathbf{r}(0) = \langle 0, 0, -1 \rangle$ ,  $\mathbf{r}'(0) = \langle 2, 1, 0 \rangle$ ,  $\mathbf{r}''(0) = \langle 0, 0, 4 \rangle$ . The normal vector to the normal plane is given by the velocity vector. So equation of the normal plane is

$$2x + y = 0.$$

The osculating plane at 't' is a plane containing  $\mathbf{r}'(t)$  and  $\mathbf{r}''(t)$ . So a normal to the osculating plane at t = 0 is given by

$$\mathbf{r}'(0) \times \mathbf{r}''(0) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 0 \\ 0 & 0 & 4 \end{vmatrix} = \langle 4, -8, 0 \rangle$$

The equation to the osculating plane is thus

4x - 8y = 0.

**12.** They are not parallel, since (2, 1, 1) is not a multiple of (1, 3, 3). If they intersect, then one can find a t and s such that

$$3 + 2t = 7 + s$$
  
 $-2 + t = 5 + 3s$   
 $-1 + t = 6 + 3s$ 

Solving the first two equations we get s = -2, t = 1. This clearly satisfies the third equation also. So the lines do intersect. To get the point of intersection we plug in t = 1 in the equation of the first line (or equivalently s = -2 in the equation of the second line). Doing so we obtain the point of intersection as (5, -1, 0).

**13.**Let  $\mathbf{v}(t) = \langle 2, -1, 3 \rangle$ . Then the vector equation for the tangent line to C at P is given by  $t\mathbf{v}(1) + \langle 0, -1, 2 \rangle = \langle 2t, -t, 3t \rangle + \langle 0, -1, 2 \rangle = \langle 2t, -t - 1, 3t + 2 \rangle$ .

Then the parametric equation for the tangent line to C at P is given by x(t) = 2t, y(t) = -t - 1, z(t) = 3t + 2.