11. We want to minimize $f(x, y, z)=d^{2}=x^{2}+y^{2}+z^{2}$ subject to the contsraint $2 x-y+3 z+14=0$. Using Lagrange multipliers we get the following system of equations:
$2 x=2 \lambda$
$2 y=-\lambda$
$2 z=3 \lambda$
$2 x-y+3 z+14=0$
To solve this we see that $x=\lambda, y=-\lambda / 2$, and $z=3 \lambda / 2$. Plugging into the last equation we get:

$$
2 \lambda+\lambda / 2+(9 / 2) \lambda=-14
$$

Solving for lambda we get $\lambda=-2$ as the only solution. Clearly this is a minimum since the $f(-2,1,-3)=14$ and $f(-7,0,0)=49$ (and same will be true for any other point on the plane). Answer: $(-2,1,-3)$
12.We want to compute the iterated integral:

$$
\int_{0}^{2} \int_{0}^{2-x} 9-x^{2}-2 y d y d x
$$

. So we get

$$
\int_{0}^{2} 9 y-x^{2} y-\left.y^{2}\right|_{0} ^{2-x} d x
$$

which simplifies to

$$
\int_{0}^{2} 14-5 x-3 x^{2}+x^{3} d x
$$

which is

$$
14 x-5 / 2 x^{2}-x^{3}+1 /\left.4 x^{4}\right|_{0} ^{2}=14
$$

Answer: 14
13.To find the critical points in the region look at the following equations:

$$
f_{x}(x, y)=\left(4-y^{2}\right) 4 x e^{2 x^{2}}=0
$$

and

$$
f_{y}(x, y)=-2 y e^{2 x^{2}}=0
$$

From here we see that the only critical point occurs at $(0,0)$ which is inside our region. The value of the function here is $f(0,0)=4$.

To check the boundary we can either use Lagrange multipliers or we can use substition. Here we will opt to use substitution by substitiuting $y^{2}=4-4 x^{2}$ in for y^{2} in $f(x, y)$.

We get a function in x, call it $g(x)=4 x^{2} e^{2 x^{2}}$ where we allow x to be in the interval $[-2,2]$. The critical values of $g(x)$ in this interval are the solutions to $g^{\prime}(x)=8 x e^{2 x^{2}}+$ $16 x^{3} e^{2 x^{2}}=0$ which is $x=0$. This is in the interval $[-2,2]$ and so including the end points this means we need to check the points $(0,-2),(0,2)$, and $(-2,0)$, and $(2,0)$.

Checking values of f we get $f(\pm 2,0)=4 e^{8}$. And $f(0, \pm 2)=0$. The global maximum of the function is $4 e^{8}$ and the global minimum is 0 .

