Name:	
Instructor:	

Math 20550, Exam 3 November 20, 2014

- The Honor Code is in effect for this examination; All work is to be your own.
- No calculators.
- \bullet The exam lasts for 1 hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLE	ASE :	MARK YOUR	ANSWERS	WITH AN X,	not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this bo	х.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total		

Instructor:

Multiple Choice

1.(6 pts) Evaluate the integral $\iint_D e^{-x^2-y^2} dA$ by changing to the polar coordinates, where $D = \{(x,y)|x^2+y^2 \leq 1\}.$

- (a)
- (b) $\pi(1-e)$ (c) $\pi(1-e^{-1})$ (d) $\pi(e-1)$ (e) $\pi(e^{-1}-1)$

2.(6 pts) Which integral is equivalent to

$$\int_{0}^{9} \int_{\sqrt{x}}^{3} \frac{4}{y^{3} + 1} \, dy dx$$

(a) $\int_0^9 \int_0^{y^2} \frac{4}{y^3 + 1} dx dy$

(b) $\int_0^9 \int_{y^2}^3 \frac{4}{y^3 + 1} dx dy$

(c) $\int_0^9 \int_0^3 \frac{4}{y^3 + 1} dx dy$

(d) $\int_0^3 \int_{y^2}^9 \frac{4}{y^3 + 1} dx dy$

(e) $\int_0^3 \int_0^{y^2} \frac{4}{y^3 + 1} dx dy$

Name: _____ Instructor:

3.(6 pts) Evaluate $\int \int \int_E zy dV$, where

 $E = \{(x, y, z) \mid 0 \le x \le 2, \quad 0 \le y \le \sqrt{4 - x^2}, \quad 0 \le z \le x\}.$

- (a)
- (b) 4
- (c) 1 (d) 2
- (e) $\frac{1}{2}$

4.(6 pts) A solid E lies within the cylinder $x^2 + y^2 = 1$, below the plane z = 4 and above $z = 1 - x^2 - y^2$. The density at any point is equal to its distance from the z axis. Find an integral that computes the mass of E.

(a)
$$\int_0^{2\pi} \int_0^1 \int_4^{1-r^2} r^2 dz dr d\theta$$

(b)
$$\int_0^{2\pi} \int_0^1 \int_{1-r^2}^4 r^2 dz dr d\theta$$

(c)
$$\int_0^{2\pi} \int_0^1 \int_{1-r^2}^1 r^2 dz dr d\theta$$

(d)
$$\int_0^{2\pi} \int_0^1 \int_{1-r^2}^4 r \, dz \, dr \, d\theta$$

(e)
$$\int_0^{2\pi} \int_0^1 \int_{4-r^2}^1 r^2 dz dr d\theta$$

Name: ______
Instructor: _____

5.(6 pts) Let E be the region between the spheres $x^2 + y^2 + z^2 = z$ and $x^2 + y^2 + z^2 = 2z$. Which of the following represents $\int \int \int_E (x^2 + y^2) \ dV$ in spherical coordinates?

- (a) $\int_0^{2\pi} \int_{-\pi/2}^{\pi/2} \int_{\cos(\phi)}^{2\cos(\phi)} \rho^4 \sin^3(\phi) \, d\rho \, d\phi \, d\theta$ (b) $\int_0^{2\pi} \int_0^{\pi/2} \int_1^2 \rho^4 \sin(\phi) \, d\rho \, d\phi \, d\theta$
- (c) $\int_0^{2\pi} \int_0^{\pi/2} \int_{\cos(\phi)}^{2\cos(\phi)} \rho^4 \sin^3(\phi) \, d\rho \, d\phi \, d\theta$ (d) $\int_0^{2\pi} \int_0^{\pi/2} \int_{\cos(\theta)}^{2\cos(\theta)} \rho^4 \sin^3(\theta) \, d\rho \, d\phi \, d\theta$
- (e) $\int_0^{2\pi} \int_0^{\pi/2} \int_{\cos(\phi)}^{2\cos(\phi)} \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta$

6.(6 pts) Find $\int_C 2xy^3 ds$, where C is the upper half of the circle $x^2 + y^2 = 4$.

- (a) 2π
- (b) 4π
- (c) 0
- (d) 8
- (e) 4

Instructor:

7.(6 pts) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = xy\mathbf{i} + y\mathbf{j}$ and C is the CLOCKWISE boundary of the region bounded by $y = x^2$, x = 2, and y = 0.

- (a) $\frac{8}{3}$

- (b) -2 (c) 0 (d) 4 (e) $-\frac{8}{3}$

8.(6 pts) Calculate $\int_C y dx + 4x dy$ where C is the curve $\mathbf{r}(t) = \langle t^2, t \rangle, \ 0 \le t \le 1$.

(a)

(b) 2

(c) -2

(d) 4 (e) -4

Name: Instructor:

9.(6 pts) Which one of the following vector fields is conservative?

- $\mathbf{F} = x\mathbf{i} + x\mathbf{j}$ (a)
- (b) None of these vector fields are conservative.
- (c) $\mathbf{F} = (\sin(y) + 2x)\mathbf{i} + \sin(y)\mathbf{j}$
- $\mathbf{F} = (3x^2 + xe^{xy})\mathbf{i} + (9y^8 + ye^{xy})\mathbf{j}$ (d)
- (e) $\mathbf{F} = (3x^2 + ye^{xy})\mathbf{i} + (9y^8 + xe^{xy})\mathbf{j}$

10.(6 pts) Using the Fundamental Theorem of Line Integrals, evaluate

$$\int_C (e^x y + x^2) dx + (e^x + \cos(y)) dy$$

where C is any smooth curve from (1,0) to $(0,\pi)$.

- (a) $\frac{2}{3}$

- (b) 0 (c) π (d) $\pi \frac{1}{3}$ (e) $-\pi$

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.) (a) Find the tangent plane to the surface defined by $\mathbf{r}(u, v) = \langle \cos u, \sin u, v \rangle$ at the point (1, 0, 2).

(b) Using the same surface, compute the surface area of this surface over the region where (u, v) range over $0 \le u \le 2\pi$ and $0 \le v \le u$.

Name:	
Instructor:	

12.(12 pts.) Use the transformation $x=u^2$ and $y=v^2$ to find the area of the region bounded by the curves $\sqrt{x}+\sqrt{y}=1$, x-axis and y-axis.

Name:	
Instructor:	

13.(12 pts.) Let C be the helix given by the equation $\mathbf{r}(t) = \langle \cos t, \sin t, 8t \rangle$, $0 \le t \le \frac{\pi}{3}$. Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ for $\mathbf{F} = \langle x^2, -xy, 0 \rangle$.

Name:		
Instructor	ANSWERS	

Math 20550, Exam 3 November 20, 2014

- The Honor Code is in effect for this examination; All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLE.	PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(a)	(b)	(ullet)	(d)	(e)	
2.	(a)	(b)	(c)	(d)	(•)	
3.	(•)	(b)	(c)	(d)	(e)	
4.	(a)	(•)	(c)	(d)	(e)	
5.	(a)	(b)	(•)	(d)	(e)	
6.	(a)	(b)	(●)	(d)	(e)	
7.	(a)	(b)	(c)	(•)	(e)	
8.	(a)	(•)	(c)	(d)	(e)	
9.	(a)	(b)	(c)	(d)	(•)	
10.	(a)	(b)	(c)	(ullet)	(e)	
6	(a) (a) (a) (a)	(b) (b) (•)	(c) (c) (c)	(d) (e) (d) (d)	(e) (e) (e)	

Please do NOT	write in this be	ox.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total		