11. (a) Here we need to compute $\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle-\sin u, \cos u, 0\rangle \times\langle 0,0,1\rangle=\langle\cos u, \sin u, 0\rangle$.

So at $(u, v)=(0,2)$ we get $\mathbf{r}(0,2)=\langle 1,0,2\rangle$, so we evaluate $\mathbf{r}_{u} \times \mathbf{r}_{v}$ at this point, to get $\langle 1,0,0\rangle$. Thus the tangent plane is given by

$$
\langle 1,0,0\rangle \cdot\langle x, y, z\rangle=\langle 1,0,0\rangle \cdot\langle 1,0,2\rangle
$$

which gives the equation $x=1$.
(b) For the second part, we need to compute $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|$ in order to integrate it. As we have done part of this in part (a) we can see that $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\sqrt{\cos ^{2} u+\sin ^{2} u+0}=1$, so we need to compute the following integral

$$
A(S)=\int_{0}^{2 \pi} \int_{0}^{u} 1 d v d u=\left.\int_{0}^{2 \pi} v\right|_{0} ^{u} d u=\int_{0}^{2 \pi} u d u=2 \pi^{2}
$$

12.First we need to compute the Jacobian, $\frac{\partial(x, y)}{\partial(u, v)}=4 u v$. Then we note that the equation $\sqrt{x}+\sqrt{y}=1$ becomes $u+v=1$ and $x=0$ and $y=0$ imply respectively that $u=0$ and $v=0$. So we now want to integrate over the region bounded by $u=0$, $v=0$, and $u+v=1$.

Let's use the convention of calling the orignal region in the xy-plane R and our region in the uv-plane S. Then we want to compute

$$
\iint_{R} 1 d A=\iint_{S} 1|4 u v| d u d v=\int_{0}^{1} \int_{0}^{1-v} 4 u v d u d v
$$

. So computing this integral we get

$$
\left.\int_{0}^{1} 2 u^{2} v\right|_{0} ^{1-v} d v=\int_{0}^{1} 2 v\left(1-2 v+v^{2}\right) d v=v^{2}-4 / 3 v^{3}+1 /\left.2 v^{4}\right|_{0} ^{1}=1-4 / 3+1 / 2=1 / 6
$$

13.First let's compute $\mathbf{r}^{\prime}(t)=\langle-\sin t, \cos t, 8\rangle$. Now

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{\pi / 3}\left(\cos ^{2} t\right)(-\sin t)+(-\cos t \sin t)(\cos t)+0 * 8 d t=\int_{0}^{\pi / 3}-2 \cos ^{2} t \sin t d t=2 /\left.3 \cos ^{3} t\right|_{0} ^{\pi / 3}=
$$

