11.(a) Here we need to compute r, X r, = (—sinu, cosu,0) x (0,0,1) = (cosu, sinu, 0).
So at (u,v) = (0,2) we get r(0,2) = (1,0, 2), so we evaluate r,, X r, at this point, to
get (1,0,0). Thus the tangent plane is given by
(1,0,0) - (z,y,z) = (1,0,0) - (1,0,2)

which gives the equation x = 1.

(b) For the second part, we need to compute |r, X r,| in order to integrate it. As we
have done part of this in part (a) we can see that |r, X r,| = vcos2u +sinu +0 = 1,
so we need to compute the following integral
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equation \/r 4+ /y = 1 becomes u +v = 1 and = 0 and y = 0 imply respectively
that u = 0 and v = 0. So we now want to integrate over the region bounded by u = 0,
v=_0,and u+v=1.

Let’s use the convention of calling the orignal region in the xy-plane R and our region
in the uv-plane S. Then we want to compute
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. So computing this integral we get

= 4uv. Then we note that the

12.First we need to compute the Jacobian,
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13.First let’s compute r'(¢t) = (—sint, cost,8). Now
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