Math 20	550 Ca	lculus	III	Tutorial
April 9,	2015			

Tutorial Worksheet

Show all your work.

1. Consider the vector field $\mathbf{F}(x,y) = x^2\mathbf{i} + x\mathbf{j}$. Let C be a path counter-clockwise around the circle $x^2 + y^2 = 9$. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$. Is \mathbf{F} conservative?

2. Determine if the following vector field is conservative and find a potential function for the vector field if it is conservative.

$$\mathbf{F}(x,y) = (2xe^{xy} + x^2ye^{xy})\mathbf{i} + (x^3e^{xy} + 2y)\mathbf{j}$$

3. A particle moves through a force field $\mathbf{F} = (2x + \sin(y))\mathbf{i} + (x\cos(y) - \sin(y))\mathbf{j}$ from (0,0) to $(2,\pi)$. Show that \mathbf{F} is conservative, and compute the work done by the force field $(W = \int_C \mathbf{F} \cdot d\mathbf{r})$.

4. Evaluate $\int_C \nabla f \cdot d\mathbf{r}$ where $f(x,y,z) = \cos \pi x + \sin \pi y - xyz$ and C is any path that starts at $\left(1,\frac{1}{2},2\right)$ and ends at (2,1,-1).