Tutorial Worksheet

Show all your work.

1. Consider the vector field $\mathbf{F}(x, y)=x^{2} \mathbf{i}+x \mathbf{j}$. Let C be a path counter-clockwise around the circle $x^{2}+y^{2}=9$. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Is \mathbf{F} conservative?
2. Determine if the following vector field is conservative and find a potential function for the vector field if it is conservative.

$$
\mathbf{F}(x, y)=\left(2 x e^{x y}+x^{2} y e^{x y}\right) \mathbf{i}+\left(x^{3} e^{x y}+2 y\right) \mathbf{j}
$$

3. A particle moves through a force field $\mathbf{F}=(2 x+\sin (y)) \mathbf{i}+(x \cos (y)-\sin (y)) \mathbf{j}$ from $(0,0)$ to $(2, \pi)$. Show that \mathbf{F} is conservative, and compute the work done by the force field $\left(W=\int_{C} \mathbf{F} \cdot d \mathbf{r}\right)$.
4. Evaluate $\int_{C} \nabla f \cdot d \mathbf{r}$ where $f(x, y, z)=\cos \pi x+\sin \pi y-x y z$ and C is any path that starts at $\left(1, \frac{1}{2}, 2\right)$ and ends at $(2,1,-1)$.
