Math 20550 Calculus III Tutorial April 23, 2015

Name: _____

Tutorial Worksheet

1. Calculate
$$\iint_S yx^2 dS$$
 where S is the surface $z = x + y^2$, $0 \le x \le 1$ and $0 \le y \le 2$.

2. Let *S* be the part of the cylinder $y^2 + z^2 = 1$, with $z \ge 0$, and $0 \le x \le 1$, and let *S* have the upward orientation. Determine which of the following equals $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F}(x, y, z) = \langle 0, 0, z \rangle$.

(a)
$$\int_{0}^{1} \int_{-1}^{1} \sqrt{1 - y^2} dy \, dx$$
 (b) $\int_{0}^{1} \int_{-1}^{1} \sqrt{1 - x^2} \, dy \, dx$ (c) $\int_{0}^{1} \int_{-1}^{1} (1 - y^2) \, dy \, dx$
(d) $\int_{0}^{1} \int_{-1}^{1} (1 - x^2) \, dy \, dx$ (e) $\int_{0}^{1} \int_{-1}^{1} \left[\sqrt{1 - y^2} \right]^{-1} \, dy \, dx$

3. Let S be portion of the plane z = 2y + 3 inside the cylinder $x^2 + y^2 = 1$ oriented with the upward normal. Calculate $\iint_S (\operatorname{curl} \mathbf{F}) \cdot d\mathbf{S}$ where

(a) 0 (b)
$$2\pi$$
 (c) $\frac{\pi}{\sqrt{5}}$ (d) $\sqrt{5\pi}$ (e) $\frac{2\pi}{\sqrt{5}}$

4. Use Stokes' theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = x^2 y \mathbf{i} + \frac{1}{3} x^3 \mathbf{j} + xy \mathbf{k}$ and C is the curve of intersection of the hyperbolic parabolid $z = y^2 - x^2$ and the cylinder $x^2 + y^2 = 1$ oriented counterclockwise as viewed from above.