Math 20550 Calculus III Tutorial April 23, 2015

Tutorial Worksheet

1. Calculate $\iint_{S} y x^{2} d S$ where S is the surface $z=x+y^{2}, 0 \leq x \leq 1$ and $0 \leq y \leq 2$.
2. Let S be the part of the cylinder $y^{2}+z^{2}=1$, with $z \geqslant 0$, and $0 \leqslant x \leqslant 1$, and let S have the upward orientation. Determine which of the following equals $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}(x, y, z)=\langle 0,0, z\rangle$.
(a) $\int_{0}^{1} \int_{-1}^{1} \sqrt{1-y^{2}} d y d x$
(b) $\int_{0}^{1} \int_{-1}^{1} \sqrt{1-x^{2}} d y d x$
(c) $\int_{0}^{1} \int_{-1}^{1}\left(1-y^{2}\right) d y d x$
(d) $\int_{0}^{1} \int_{-1}^{1}\left(1-x^{2}\right) d y d x$
(e) $\int_{0}^{1} \int_{-1}^{1}\left[\sqrt{1-y^{2}}\right]^{-1} d y d x$
3. Let S be portion of the plane $z=2 y+3$ inside the cylinder $x^{2}+y^{2}=1$ oriented with the upward normal. Calculate $\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot d \mathbf{S}$ where

$$
\mathbf{F}(x, y, z)=\left\langle 2 e^{y}-z, \cos (y z), x e^{y}\right\rangle
$$

(a) 0
(b) 2π
(c) $\frac{\pi}{\sqrt{5}}$
(d) $\sqrt{5} \pi$
(e) $\frac{2 \pi}{\sqrt{5}}$
4. Use Stokes' theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+\frac{1}{3} x^{3} \mathbf{j}+x y \mathbf{k}$ and C is the curve of intersection of the hyperbolic parabloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1$ oriented counterclockwise as viewed from above.

