\qquad

Tutorial Worksheet

1. Calculate $\iint_{S} y x^{2} d S$ where S is the surface $z=x+y^{2}, 0 \leq x \leq 1$ and $0 \leq y \leq 2$.

Solution: Letting $\mathbf{r}(x, y)=x i+y j+\left(x+y^{2}\right) k$ we have

$$
\mathbf{r}_{x}=i+k, \quad \mathbf{r}_{y}=j+2 y k
$$

Therefore,

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=-i-2 y j+k
$$

and

$$
\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|=\sqrt{1^{2}+4 y^{2}+1}
$$

Therefore, using

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f\left(\mathbf{r}(x, y)\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| d A\right.
$$

we obtain

$$
\iint_{S} y x^{2} d \mathbf{S}=\int_{0}^{1} \int_{0}^{2} y x^{2} \sqrt{1^{2}+4 y^{2}+1} d A
$$

We separate the integrals

$$
\iint_{S} y x^{2} d \mathbf{S}=\sqrt{2} \int_{0}^{1} x^{2} d x \int_{0}^{2} y \sqrt{1+2 y^{2}} d y
$$

The first integral integrates to $1 / 3$, and the second integral becomes

$$
\int_{0}^{2} y \sqrt{1+2 y^{2}} d y=\left.\frac{2}{12}\left(1+2 y^{2}\right)^{3 / 2}\right|_{0} ^{2}=\frac{13}{3}
$$

so we obtain

$$
\iint_{S} y x^{2} d \mathbf{S}=\frac{13 \sqrt{2}}{9}
$$

2. Let S be the part of the cylinder $y^{2}+z^{2}=1$, with $z \geqslant 0$, and $0 \leqslant x \leqslant 1$, and let S have the upward orientation. Determine which of the following equals $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}(x, y, z)=\langle 0,0, z\rangle$.
(※) $\int_{0}^{1} \int_{-1}^{1} \sqrt{1-y^{2}} d y d x$
(b) $\int_{0}^{1} \int_{-1}^{1} \sqrt{1-x^{2}} d y d x$
(c) $\int_{0}^{1} \int_{-1}^{1}\left(1-y^{2}\right) d y d x$
(d) $\int_{0}^{1} \int_{-1}^{1}\left(1-x^{2}\right) d y d x$
(e) $\int_{0}^{1} \int_{-1}^{1}\left[\sqrt{1-y^{2}}\right]^{-1} d y d x$

Solution: Our surface is:

This is the surface described by $z=\sqrt{1-y^{2}}$ where $0 \leqslant x \leqslant 1$, so letting x and y be our parameters, we have

$$
\mathbf{X}(x, y)=\left\langle x, y, \sqrt{1-y^{2}}\right\rangle
$$

where $0 \leqslant x \leqslant 1$ and $-1 \leqslant y \leqslant 1$. Let $D=\{(x, y) \mid 0 \leqslant x \leqslant 1,-1 \leqslant y \leqslant 1\}$. Now we need a normal vector field on S pointing upward. Begin by finding the two tangent vector fields X_{x} and X_{y} :

$$
\mathbf{X}_{x}=\langle 1,0,0\rangle \quad \text { and } \quad \mathbf{X}_{y}=\left\langle 0,1,-\frac{y}{\sqrt{1-y^{2}}}\right\rangle
$$

Then an upward normal vector field \mathbf{n} is given by taking the cross product $\mathbf{X}_{x} \times \mathbf{X}_{y}$ We take the cross product in this order because of the right hand rule.

$$
\mathbf{n}=\mathbf{X}_{x} \times \mathbf{X}_{y}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 0 \\
0 & 1 & -\frac{y}{\sqrt{1-y^{2}}}
\end{array}\right|=\left\langle 0, \frac{y}{\sqrt{1-y^{2}}}, 1\right\rangle
$$

Finally,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D} \mathbf{F}(\mathbf{X}(x, y)) \cdot \mathbf{n} d A \\
& =\iint_{D}\left\langle 0,0, \sqrt{1-y^{2}}\right\rangle \cdot\left\langle 0, \frac{y}{\sqrt{1-y^{2}}}, 1\right\rangle d A \\
& =\int_{0}^{1} \int_{-1}^{1} \sqrt{1-y^{2}} d y d x
\end{aligned}
$$

3. Let S be portion of the plane $z=2 y+3$ inside the cylinder $x^{2}+y^{2}=1$ oriented with the upward normal. Calculate $\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot d \mathbf{S}$ where

$$
\mathbf{F}(x, y, z)=\left\langle 2 e^{y}-z, \cos (y z), x e^{y}\right\rangle
$$

(a) 0
($(\mathbb{X}) 2 \pi$
(c) $\frac{\pi}{\sqrt{5}}$
(d) $\sqrt{5} \pi$
(e) $\frac{2 \pi}{\sqrt{5}}$

Solution: The region we have is:

We will use

$$
\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot d \mathbf{S}=\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d S
$$

Parameterising the plane that is inside the cylinder, we have

$$
\mathbf{X}(x, y)=\langle x, y, 2 y+3\rangle, \quad x^{2}+y^{2} \leqslant 1
$$

and let $D=\left\{(x, y) \mid x^{2}+y^{2} \leqslant 1\right\}$. First, finding the curl of \mathbf{F} :

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 e^{y}-z & \cos (y z) & x e^{y}
\end{array}\right|=\left\langle x e^{y}+y \sin (y z),-\left(1+e^{y}\right),-2 e^{y}\right\rangle
$$

The tangent vectors are:

$$
\begin{aligned}
& \frac{\partial \mathbf{X}}{\partial x}=\langle 1,0,0\rangle \\
& \frac{\partial \mathbf{X}}{\partial y}=\langle 0,1,2\rangle
\end{aligned}
$$

By the right hand rule, the normal vector field is:

$$
\mathbf{n}=\frac{\partial \mathbf{X}}{\partial x} \times \frac{\partial \mathbf{X}}{\partial y}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right|=\langle 0,-2,1\rangle
$$

Notice we don't need to bother figuring out the x-component of $(\operatorname{curl} \mathbf{F})(\mathbf{X}(x, y))$ since it will be multiplied by 0 in the dot product. So

$$
(\operatorname{curl} \mathbf{F})(\mathbf{X}(x, y))=\left\langle\cdot,-\left(1+e^{y}\right),-2 e^{y}\right\rangle
$$

and

$$
(\operatorname{curl} \mathbf{F})(\mathbf{X}(r, \theta)) \cdot \mathbf{n}=(\cdot) 0+2\left(1+e^{y}\right)-2 e^{y}=2
$$

Finally, we have

$$
\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot d \mathbf{S}=\iint_{D} 2 d A=2 \operatorname{area}(D)=2\left(\pi \cdot 1^{2}\right)=2 \pi
$$

4. Use Stokes' theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+\frac{1}{3} x^{3} \mathbf{j}+x y \mathbf{k}$ and C is the curve of intersection of the hyperbolic parabloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1$ oriented counterclockwise as viewed from above.
Solution: We calculate curl $\mathbf{F}=x \mathbf{i}-y \mathbf{j}$. Stokes' theorem tells us that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S} .
$$

Letting $P=x, Q=-y, R=0$ and $g(x, y)=y^{2}-x^{2}$, we may apply the formula

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}\left(-P g_{x}-Q g_{y}+R\right) d A
$$

to obtain

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}[-x(-2 x)-(-y)(2 y)] d A=2 \int_{0}^{2 \pi} \int_{0}^{1} r^{2} r d r d \theta=\pi
$$

