Tutorial Worksheet

Show all your work.

1. Find the vector given by the projection of $\mathbf{v}=\langle 3,5,4\rangle$ onto $\mathbf{a}=\langle 1,2,-2\rangle$.

Solution: The projection of \mathbf{v} onto \mathbf{a} is given by $\operatorname{Proj}_{\mathbf{a}} \mathbf{v}=\frac{\mathbf{a} \cdot \mathbf{v}}{|\mathbf{a}|^{2}} \mathbf{a}$. The squared length of \mathbf{a} is given by $|\mathbf{a}|^{2}=\mathbf{a} \cdot \mathbf{a}=1^{2}+2^{2}+(-2)^{2}=9$ and the dot product of \mathbf{a} and \mathbf{v} is given by $\mathbf{a} \cdot \mathbf{v}=3+10-8=5$. Therefore $\operatorname{Proj}_{\mathbf{a}} \mathbf{v}=\frac{5}{9}\langle 1,2,-2\rangle$.
2. Find a vector perpendicular to the plane that passes through the three points $P(1,4,5)$, $Q(-2,5,-2)$ and $R(1,-1,0)$.

Solution: First find two vectors in the plane: these are given by the displacement vectors from the point P to the point Q and from the point P to the point R. Call these vectors \mathbf{u} and \mathbf{v}, respectively. Then $\mathbf{u}=\langle-2-1,5-4,-2-5\rangle=\langle-3,1,-7\rangle$ and $\mathbf{v}=\langle 1-1,-1-4,0-5\rangle=$ $\langle 0,-5,-5\rangle$. A vector that is perpendicular to both \mathbf{u} and \mathbf{v} is the cross-product of \mathbf{u} with \mathbf{v} : $\mathbf{u} \times \mathbf{v}=\left|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & -7 \\ 0 & -5 & -5\end{array}\right|=\langle 1 \cdot(-5)-(-7) \cdot(-5),-((-3) \cdot(-5)-(-7) \cdot 0),(-3) \cdot(-5)-1 \cdot 0\rangle=$ $\langle-40,-15,15\rangle$.
3. Is

$$
x^{2}-2 x+y^{2}+z^{2}+7=1-5 x+2 z
$$

an equation of a sphere? If so, find the center of the sphere.
Solution: After completing the square for each of the variables x, y and z one obtains the equation $\left(x+\frac{3}{2}\right)^{2}+y^{2}+(z-1)^{2}=-\frac{11}{4}$. This is clearly not the equation of a sphere since we require that the radius squared be a positive number.
4. Let L be a straight line that passes through the points $A(2,4,-3)$ and $B(3,-1,1)$. At what point does this line intersect the $y z$-plane?

Solution: The equation of the line passing through the points A and B is given by $L=\mathbf{r}_{0}+t \mathbf{r}$, where \mathbf{r}_{0} is the position vector of the point A and \mathbf{r} is the displacement vector from A to B. Now $\mathbf{r}=\langle 3-2,-1-4,1-3\rangle=\langle 1,-5,-2\rangle$ so $L=\langle 2,4,-3\rangle+t\langle 1,-5,-2\rangle=$ $\langle 2+t, 4-5 t,-3-2 t\rangle$. Now L intersects the $y-z$ plane when the first coordinate of L is zero. That is, when $2+t=0$ or $t=-2$. When $t=-2, L=\langle 0,14,-11\rangle$ so that L intersects the $y-z$ plane at the point $(0,14,-11)$.
5. A tow truck drags a stalled car along a road. The chain makes an angle of 30° with the road and the tension in the chain is 1200 N . How much work is done by the truck in pulling the car 1 km ?

Solution: Let \mathbf{F} and \mathbf{D} denote the force and displacement vectors, respectively, with $|\mathbf{F}|=$ 1200 and $|\mathbf{D}|=1$. Then the work done is given by $W=|\mathbf{F}||\mathbf{D}| \cos \theta=1200 \cdot 1 \cos 30=$ $600 \sqrt{3} \mathrm{KJ}$.
6. Find an equation of the sphere that passes through the origin and has center $(3,-2,5)$.

Solution: The sphere must touch the origin so the radius is given by the length of the position vector of the point $(3,-2,5)$. Therefore $r^{2}=3^{2}+(-2)^{2}+5^{2}=38$ and the equation of the sphere with the given centre is $(x-3)^{2}+(y+2)^{2}+(z-5)^{2}=38$.

What is an equation of the intersection of this sphere with the $y z$-plane?
Solution: Set $x=0$ in the above equation and we obtain the equation of a circle with radius $\sqrt{38}$ and center $(0,-2,5):(y+2)^{2}+(z-5)^{2}=38$

