## Tutorial Worksheet

Show all your work.

1. The initial position and velocity of an object moving with acceleration $\mathbf{a}=e^{t} \mathbf{i}$ are $\mathbf{r}(0)=2 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{v}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}$. Find its position at time $t$.
2. Find the equations for the normal and osculating planes to the curve $\mathbf{r}(t)=2 \cos (3 t) \mathbf{i}+$ $t \mathbf{j}+2 \sin (3 t) \mathbf{k}$ at the point $(-2, \pi, 0)$.
3. Find the unit tangent, unit normal, and binormal vectors to the curve $\mathbf{r}(t)=\left\langle t^{2}, t^{3}, t^{4}+t^{2}\right\rangle$ at $t=1$.
4. Find the length of the curve $\mathbf{r}(t)=\left\langle e^{2 t}, t, 2 e^{t}\right\rangle$ on the interval $0 \leq t \leq 3$.
