\qquad

Tutorial Worksheet

Show all your work.

1. Do the following limits exist? If it exists, compute the limit, if not, explain why it does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}, \lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{4}}{x^{4}+y^{4}}
$$

Solution: Along x-axis, $y=0, \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}=\lim _{x \rightarrow 0} \frac{x^{2} 0^{2}}{x^{4}+3 \cdot 0^{4}}=0$.
Along the path $x=y, \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}=\lim _{x \rightarrow 0} \frac{x^{4}}{4 x^{4}}=\frac{1}{4}$.
Hence $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}$ does not exist.
2. Find $f_{y x}(1,2), f_{x x}(1,2), f_{y y}(1,2)$ and $f_{x y}(1,2)$ for the function $f(x, y)=x^{3}+2 x^{2} y^{2}+y^{3}$.

Solution: We compute

$$
\begin{aligned}
f_{x} & =3 x^{2}+4 x y^{2}, f_{y}=3 y^{2}+4 x^{2} y \\
f_{x x} & =6 x+4 y^{2}, f_{y y}=4 x^{2}+6 y, f_{x y}=f_{y x}=8 x y .
\end{aligned}
$$

We get

$$
\begin{aligned}
& f_{x x}(1,2)=22 \\
& f_{y y}(1,2)=16 \\
& f_{x y}(1,2)=f_{y x}(1,2)=16 .
\end{aligned}
$$

3. Identify the level curves of $f(x, y)=\sqrt{x^{2}+y^{2}}$. Using the level curves, plot the surface.

Solution: We first notice that $z^{2}=x^{2}+y^{2}$ is the formula for a positive cone. Setting $z^{2}=k^{2}$, we see that the curves $x^{2}+y^{2}=k^{2}$ are circles with radius k and centers at the origin.

4. If the position of an object is given by $r(t)=\left(\frac{1}{2} t^{2}+1\right) i+\left(t^{2}+t-2\right) j+\left(t^{3}-t+3\right) k$, then determine the tangential and normal components of acceleration.

Solution: This is a formulaic problem. Computing

$$
\begin{aligned}
r^{\prime}(t) & =t i+(2 t+1) j+\left(3 t^{2}-1\right) k \\
r^{\prime \prime}(t) & =i+2 j+6 t k,
\end{aligned}
$$

we have

$$
r^{\prime}(t) \cdot r^{\prime \prime}(t)=t+4 t+2+18 t^{4}-6 t=18 t^{3}-t+2
$$

and

$$
\left.r^{\prime}(t) \times r^{\prime \prime}(t)=\left(6 t^{2}+6 t+2\right) i-3 t^{2}+1\right) j-k
$$

Calculating the magnitudes of r^{\prime} and the above cross product we have

$$
\begin{aligned}
& \left|r^{\prime}(t)\right|=\sqrt{t^{2}+(2 t+1)^{2}+\left(3 t^{2}-1\right)^{2}}=\sqrt{9 t^{4}-t^{2}+4 t+2} \\
& \left|r^{\prime}(t) \times r^{\prime \prime}(t)\right|=\sqrt{\left(6 t^{2}+6 t+2\right)^{2}+\left(3 t^{2}+1\right)^{2}+1}=\sqrt{45 t^{4}+72 t^{3}+66 t^{2}+24 t+6}
\end{aligned}
$$

Therefore, the tangential component of acceleration is

$$
a_{T}=\frac{18 t^{3}-t+2}{\sqrt{9 t^{4}-t^{2}+4 t+2}},
$$

and the normal component of acceleration is

$$
a_{N}=\frac{\sqrt{45 t^{4}+72 t^{3}+66 t^{2}+24 t+6}}{\sqrt{9 t^{4}-t^{2}+4 t+2}} .
$$

5. A cannon fires a ball with mass of 2 kg with an initial speed of $100 \mathrm{~m} / \mathrm{s}$ at an angle of 45 degrees to the ground in the easterly direction. A southwesterly wind applies a steady force of $2 \sqrt{8} \mathrm{~N}$ to the ball in a northeasterly direction. At what time does the ball land?

Solution: Let i be the north direction, j the east direction and k the upwards direction. Since force $=$ mass \times acceleration, we see that the force creates an acceleration of $2 \sqrt{8} / 2$ $=\sqrt{8} \mathrm{~m} / \mathrm{s}^{2}$ in the northeasterly direction. The vector of length $\sqrt{8}$ in the northeasterly direction can be described by $2 i+2 j$. Combined with the acceleration due to gravity, the acceleration acting on the ball is $a(t)=2 i+2 j-9.8 k$. Therefore,

$$
v(t)=\int a(t) d t=2 t i+2 t j-9.8 t k+\mathbf{C}
$$

Initially, $v(0)=100 \cos \pi / 4 j+100 \sin \pi / 4 k=50 \sqrt{2} j+50 \sqrt{2} k$. Therefore

$$
v(t)=\int a(t) d t=2 t i+2 t j-9.8 t k+50 \sqrt{2} j+50 \sqrt{2} k .
$$

Now, we integrate to solve for $r(t)$
$r(t)=\int v(t) d t=\int 2 t i+(2 t+50 \sqrt{2}) j-(9.8 t-50 \sqrt{2}) k d t=t^{2} i+\left(t^{2}+50 \sqrt{2} t\right) j-\left(4.9 t^{2}-50 \sqrt{2} t\right) k+\mathbf{D}$.
Initially, $r(t)=0 \Longrightarrow \mathbf{D}=0$. So $r(t)=t^{2} i+\left(t^{2}+50 \sqrt{2} t\right) j-\left(4.9 t^{2}-50 \sqrt{2}\right) k$. The ball lands when $4.9 t^{2}-50 \sqrt{2} t=0 \Longrightarrow t=\frac{50 \sqrt{2}}{4.9}$.

