
Math 20550 Calculus III Tutorial Name:
March 26, 2015

Tutorial Worksheet

Show all your work.
1. Let E be the region between the spheres x2 + y2 + z2 = z and x2 + y2 + z2 = 2z. Set up,
but do not calculate, the integral

∫∫∫
E

(x2 + y2) dV .

Solution: First we graph the spheres. Rearranging and completing the square, we get

Sphere 1: x2 + y2 + (z − 1/2)2 = 1/4 =⇒ Sphere centered at (0, 0, 1/2) with radius r = 1/2

Sphere 2: x2 + y2 + (z − 1)2 = 1 =⇒ Sphere centered at (0, 0, 1) with radius r = 1,

Therefore the spheres look like this:
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

In spherical coordinates, the equation of Sphere 1 becomes ρ2 = ρ cos(φ), or ρ = cos(φ).
Similarly, the equation of Sphere 2 becomes ρ2 = 2ρ cos(φ), or ρ = 2 cos(φ). There is no
restriction on θ from the spheres, so 0 ≤ θ ≤ 2π. Both spheres lie above the xy-plane, so
0 ≤ φ ≤ π

2
. Because Sphere 1 is inside Sphere 2, we have cos(φ) ≤ ρ ≤ 2 cos(φ).

Now we convert the integrand to spherical coordinates: x2 + y2 = r2 = ρ2 sin2(φ). Since
dV = ρ2 sin(φ)dρ dφ dθ, we get (x2 + y2) dV = ρ4 sin3(φ) dρ dφ dθ. Hence the integral is∫ 2π

0

∫ π/2

0

∫ 2 cos(φ)

cos(φ)

ρ4 sin3(φ) dρ dφ dθ.
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2. Set up, but do not solve, the integral that gives the volume of the solid region bounded
by the paraboloid z = 3y2 + 3x2 and the cone z = 4−

√
x2 + y2.

Solution: Because the paraboloid and the cone are both rotationally symmetric, we shall
use cylindrical coordinates. Using r2 = x2 + y2, the equation for the paraboloid becomes
z = 3r2, while the cone becomes z = 4− r. Note that these equations do not depend on θ,
so we may graph them in the (r, z)-plane.

Cone opening downward, paraboloid opening upward and
the graphs of z = 3r2 and z = 4− r in the (r, z) plane.

Therefore, in terms of our limits, we will have 3r2 ≤ z ≤ 4− r. To find our limits for r, we
simply find where the two surfaces intersect. So we have

3r2 = 4− r =⇒ r = 1 or − 4/3.

But a negative r is not possible, so the paraboloid and cone intersect at r = 1. So we have
0 ≤ r ≤ 1. The bounds on θ are 0 ≤ θ ≤ 2π. Finally, since we are computing volume, the
integrand is simply dV = r dz dr dθ. Therefore the integral is∫ 2π

0

∫ 1

0

∫ 4−r

3r2
r dz dr dθ.
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3. Let D be the quarter of the disc centered at the origin with radius a with x ≥ 0 and
y ≥ 0. Suppose that the density at a point on D is proportional to the square of its distance
from the origin. Find the center of mass of D. (Hint: x = y by symmetry.)

Solution: Let ρ(r, θ) denote the density function in polar coordinates. Saying that ρ is
proportional to the square of its distance from the origin is the same as saying that there is
a constant number c > 0 with

ρ(r, θ) = cr2.

We first compute the mass:

m =

∫∫
D

ρ dA

=

∫ π/2

0

∫ a

0

cr3 dr dθ

=

∫ π/2

0

1

4
ca4 dθ

=
1

8
πca4.

Next we compute the moment about the y-axis:

My =

∫∫
D

xρ dA

=

∫ π/2

0

∫ a

0

cr4 cos θ dr dθ

=

∫ π/2

0

1

5
ca5 cos θ dθ

=
1

5
ca5.

Now

x =
1
5
ca5

1
8
πca4

=
8a

5π
.

By diagonal symmetry, x = y. Therefore the center of mass is ( 8a
5π
, 8a
5π

).
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4. Use a triple integral to compute the volume of the tetrahedron bounded by the planes
x = 0, y = 0, z = 0, and 2x+ y + z = 4.

Solution: Let us use a dz dy dx integral (though other choices are just as good). The bounds
on z are 0 ≤ z ≤ 4 − 2x − y. To find the bounds on x and y, we set z = 0 (because the
tetrahedron is largest at its base). This gives the equation 2x + y = 4, so 0 ≤ y ≤ 4 − 2x,
and 0 ≤ x ≤ 2.

The base of the tetrahedron.

Thus

V =

∫ 2

0

∫ 4−2x

0

∫ 4−2x−y

0

dz dy dx

=

∫ 2

0

∫ 4−2x

0

(4− 2x− y) dy dx

=

∫ 2

0

((4− 2x)y − 1

2
y2)

∣∣∣∣y=4−2x

y=0

dx

=

∫ 2

0

((4− 2x)2 − 1

2
(4− 2x)2) dx

=

∫ 2

0

1

2
(4− 2x)2 dx

= − 1

12
(4− 2x)3

∣∣∣∣x=2

x=0

=
16

3
.
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