\qquad

Tutorial Worksheet

Show all your work.

1. Let E be the region between the spheres $x^{2}+y^{2}+z^{2}=z$ and $x^{2}+y^{2}+z^{2}=2 z$. Set up, but do not calculate, the integral $\iiint_{E}\left(x^{2}+y^{2}\right) d V$.

Solution: First we graph the spheres. Rearranging and completing the square, we get
Sphere 1: $x^{2}+y^{2}+(z-1 / 2)^{2}=1 / 4 \Longrightarrow$ Sphere centered at $(0,0,1 / 2)$ with radius $r=1 / 2$ Sphere 2: $x^{2}+y^{2}+(z-1)^{2}=1 \Longrightarrow$ Sphere centered at $(0,0,1)$ with radius $r=1$,

Therefore the spheres look like this:

In spherical coordinates, the equation of Sphere 1 becomes $\rho^{2}=\rho \cos (\phi)$, or $\rho=\cos (\phi)$. Similarly, the equation of Sphere 2 becomes $\rho^{2}=2 \rho \cos (\phi)$, or $\rho=2 \cos (\phi)$. There is no restriction on θ from the spheres, so $0 \leq \theta \leq 2 \pi$. Both spheres lie above the $x y$-plane, so $0 \leq \phi \leq \frac{\pi}{2}$. Because Sphere 1 is inside Sphere 2, we have $\cos (\phi) \leq \rho \leq 2 \cos (\phi)$.

Now we convert the integrand to spherical coordinates: $x^{2}+y^{2}=r^{2}=\rho^{2} \sin ^{2}(\phi)$. Since $d V=\rho^{2} \sin (\phi) d \rho d \phi d \theta$, we get $\left(x^{2}+y^{2}\right) d V=\rho^{4} \sin ^{3}(\phi) d \rho d \phi d \theta$. Hence the integral is

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{\cos (\phi)}^{2 \cos (\phi)} \rho^{4} \sin ^{3}(\phi) d \rho d \phi d \theta .
$$

2. Set up, but do not solve, the integral that gives the volume of the solid region bounded by the paraboloid $z=3 y^{2}+3 x^{2}$ and the cone $z=4-\sqrt{x^{2}+y^{2}}$.
Solution: Because the paraboloid and the cone are both rotationally symmetric, we shall use cylindrical coordinates. Using $r^{2}=x^{2}+y^{2}$, the equation for the paraboloid becomes $z=3 r^{2}$, while the cone becomes $z=4-r$. Note that these equations do not depend on θ, so we may graph them in the (r, z)-plane.

Cone opening downward, paraboloid opening upward and the graphs of $z=3 r^{2}$ and $z=4-r$ in the (r, z) plane.

Therefore, in terms of our limits, we will have $3 r^{2} \leq z \leq 4-r$. To find our limits for r, we simply find where the two surfaces intersect. So we have

$$
3 r^{2}=4-r \Longrightarrow r=1 \text { or }-4 / 3
$$

But a negative r is not possible, so the paraboloid and cone intersect at $r=1$. So we have $0 \leq r \leq 1$. The bounds on θ are $0 \leq \theta \leq 2 \pi$. Finally, since we are computing volume, the integrand is simply $d V=r d z d r d \theta$. Therefore the integral is

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{3 r^{2}}^{4-r} r d z d r d \theta
$$

3. Let D be the quarter of the disc centered at the origin with radius a with $x \geq 0$ and $y \geq 0$. Suppose that the density at a point on D is proportional to the square of its distance from the origin. Find the center of mass of D. (Hint: $\bar{x}=\bar{y}$ by symmetry.)

Solution: Let $\rho(r, \theta)$ denote the density function in polar coordinates. Saying that ρ is proportional to the square of its distance from the origin is the same as saying that there is a constant number $c>0$ with

$$
\rho(r, \theta)=c r^{2} .
$$

We first compute the mass:

$$
\begin{aligned}
m & =\iint_{D} \rho d A \\
& =\int_{0}^{\pi / 2} \int_{0}^{a} c r^{3} d r d \theta \\
& =\int_{0}^{\pi / 2} \frac{1}{4} c a^{4} d \theta \\
& =\frac{1}{8} \pi c a^{4} .
\end{aligned}
$$

Next we compute the moment about the y-axis:

$$
\begin{aligned}
M_{y} & =\iint_{D} x \rho d A \\
& =\int_{0}^{\pi / 2} \int_{0}^{a} c r^{4} \cos \theta d r d \theta \\
& =\int_{0}^{\pi / 2} \frac{1}{5} c a^{5} \cos \theta d \theta \\
& =\frac{1}{5} c a^{5}
\end{aligned}
$$

Now

$$
\bar{x}=\frac{\frac{1}{5} c a^{5}}{\frac{1}{8} \pi c a^{4}}=\frac{8 a}{5 \pi} .
$$

By diagonal symmetry, $\bar{x}=\bar{y}$. Therefore the center of mass is $\left(\frac{8 a}{5 \pi}, \frac{8 a}{5 \pi}\right)$.
4. Use a triple integral to compute the volume of the tetrahedron bounded by the planes $x=0, y=0, z=0$, and $2 x+y+z=4$.

Solution: Let us use a $d z d y d x$ integral (though other choices are just as good). The bounds on z are $0 \leq z \leq 4-2 x-y$. To find the bounds on x and y, we set $z=0$ (because the tetrahedron is largest at its base). This gives the equation $2 x+y=4$, so $0 \leq y \leq 4-2 x$, and $0 \leq x \leq 2$.

The base of the tetrahedron.
Thus

$$
\begin{aligned}
V & =\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-2 x-y} d z d y d x \\
& =\int_{0}^{2} \int_{0}^{4-2 x}(4-2 x-y) d y d x \\
& =\left.\int_{0}^{2}\left((4-2 x) y-\frac{1}{2} y^{2}\right)\right|_{y=0} ^{y=4-2 x} d x \\
& =\int_{0}^{2}\left((4-2 x)^{2}-\frac{1}{2}(4-2 x)^{2}\right) d x \\
& =\int_{0}^{2} \frac{1}{2}(4-2 x)^{2} d x \\
& =-\left.\frac{1}{12}(4-2 x)^{3}\right|_{x=0} ^{x=2} \\
& =\frac{16}{3}
\end{aligned}
$$

