Tutorial Worksheet

Show all your work.

1. Compute $\int_{C} x^{2} d s, C$ is the intersection of the surface $x^{2}+y^{2}+z^{2}=4$ and the plane $z=\sqrt{3}$.
2. Evaluate $\int_{C} \sin (\pi y) d y+y x^{2} d x$ where C is the line segment from $(1,4)$ to $(0,2)$.
3. Let R be the region bounded by the ellipse $16 x^{2}+4 y^{2}=16$. Evaluate the integral $\iint_{R} 2 y d A$. [Hint: Use the transformation $x=u \cos (v), y=2 u \sin (v)$.]
4. Let R be the parallelogram between the lines $2 x-y=3,2 x-y=5, x+y=-1$, and $x+y=1$. Evaluate the integral $\iint_{R} e^{2 x-y} d A$.
