\qquad

Tutorial Worksheet

Show all your work.

1. Compute $\int_{C} x^{2} d s, C$ is the intersection of the surface $x^{2}+y^{2}+z^{2}=4$ and the plane $z=\sqrt{3}$.

Solution: We need to parametrize the curve. First, setting $z=\sqrt{3}$ in the equation of the surface, we get $x^{2}+y^{2}+3=4$ or $x^{2}+y^{2}=1$, which is a circle of radius 1 . Therefore, we can parametrize x and y as a circle, with z as a constant $\sqrt{3}$.

Let $x=\cos t, y=\sin t, z=\sqrt{3}, 0 \leqslant t \leqslant 2 \pi$.

$$
\begin{gathered}
d s=\sqrt{x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t)} d t=d t \\
\int_{C} x^{2} d s \\
=\int_{0}^{2 \pi} \cos ^{2} t d t \\
=4 \int_{0}^{\pi / 2} \cos ^{2} t d t \\
=\pi
\end{gathered}
$$

2. Evaluate $\int_{C} \sin (\pi y) d y+y x^{2} d x$ where C is the line segment from $(1,4)$ to $(0,2)$.

Solution: A parametric representation of the line segment is

$$
\begin{gathered}
x=1-t, y=4-2 t, 0 \leqslant t \leqslant 1 \\
\int_{C} \sin (\pi y) d y+y x^{2} d x \\
=\int_{0}^{1} \sin (\pi(4-2 t))(-2) d t+\int_{0}^{1}(4-2 t)(1-t)^{2}(-1) d t \\
=-\left.\frac{1}{\pi} \cos (4 \pi-2 \pi t)\right|_{0} ^{1}-\left.\left(-\frac{1}{2} t^{4}+\frac{8}{3} t^{3}-5 t^{2}+4 t\right)\right|_{0} ^{1} \\
=-\frac{7}{6}
\end{gathered}
$$

3. Let R be the region bounded by the ellipse $16 x^{2}+4 y^{2}=16$. Evaluate the integral $\iint_{R} 2 y d A$. [Hint: Use the transformation $x=u \cos (v), y=2 u \sin (v)$.]

Solution: First, we convert our boundary into the new coordinates, thinking of them as basically polar coordinates. $16 x^{2}+4 y^{2}=16$ implies $16=16 u^{2} \cos ^{2}(v)+4\left(4 u^{2} \sin ^{2}(v)\right)=$ $16 u^{2} \cos ^{2}(v)+16 u^{2} \sin ^{2}(v)=16 u^{2}$, so $u^{2}=1$. Therefore the bounds in u and v of our region should be $0 \leq u \leq 1,0 \leq v \leq 2 \pi$.

We then convert our argument into u and $v .2 y=2(2 u \sin (v))=4 u \sin (v)$.
We also need the Jacobian:

$$
\begin{gathered}
\frac{\delta(x, y)}{\delta(u, v)}=\frac{\delta x}{\delta u} \frac{\delta y}{\delta v}-\frac{\delta x}{\delta v} \frac{\delta y}{\delta u} \\
=(\cos (v))(2 u \cos (v))-(-u \sin (v))(2 \sin (v)) \\
=2 u \cos ^{2}(v)+2 u \sin ^{2}(v)=2 u
\end{gathered}
$$

Therefore $\iint_{R} 2 y d A=\int_{0}^{1} \int_{0}^{2 \pi}(4 u \sin (v))(2 u) d v d u=\int_{0}^{1} \int_{0}^{2 \pi} 8 u^{2} \sin (v) d v d u=0$
4. Let R be the parallelogram between the lines $2 x-y=3,2 x-y=5, x+y=-1$, and $x+y=1$. Evaluate the integral $\iint_{R} e^{2 x-y} d A$.
Solution: This time, the change of variables is easiest to define by writing down T^{-1}, where $2 x-y=u$ and $x+y=v$. It's immediately apparent that the bounds of integration must be $3 \leq u \leq 5,-1 \leq v \leq 1$.

To find the Jacobian, we solve for x and y in terms of u and v, finding $x=\frac{1}{3}(u+v)$ and $y=\frac{1}{2}(v-u)$. This lets us evaluate:

$$
\begin{gathered}
\frac{\delta(x, y)}{\delta(u, v)}=\frac{\delta x}{\delta u} \frac{\delta y}{\delta v}-\frac{\delta x}{\delta v} \frac{\delta y}{\delta u} \\
=\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{3}\right)\left(-\frac{1}{2}\right)=\frac{1}{3}
\end{gathered}
$$

Finally we evaluate the integral itself:

$$
\begin{gathered}
\iint_{R} e^{2 x-y} d A=\int_{3}^{5} \int_{-1}^{1}\left(e^{u}\right)\left(\frac{1}{3}\right) d v d u \\
=\int_{3}^{5} \frac{2}{3} e^{u} d u=\frac{2}{3}\left(e^{5}-e^{3}\right)
\end{gathered}
$$

