Problem 1 (12 points) A family decides to keep having children until they have a girl. Assume
\[P(B) = P(G) = \frac{1}{2}, \]
and that the genders of the different children are independent. Let \(N \) be the number of children the family will have had when they have their first girl.

1. What is the \(E(N) \), the expectation of \(N \)?

2. What is the Variance of \(N \)?

Problem 2 (12 points) You have a six-sided die. Assume that the number \(N \) of dots on the side facing up after a toss has probability
\[P(N = n) = C \ln(n + 1), \]
for \(1 \leq n \leq 6 \) and some constant \(C \).

1. What is \(C \)?

2. To two decimal points, what is \(E(N) \)?

Problem 3 (12 points) A continuous nonnegative random variable \(X \) has distribution function \(F(x) \) and probability density function \(f(x) \).

1. In terms of \(F \), what is the distribution function of \(\sqrt{X} \)?

2. In terms of \(f(x) \), which you may assume continuous, what is the density function of \(\sqrt{X} \)?
Problem 4 (11 points) X and Y are independent exponential random variables with parameters $\lambda > 0$ and $\mu > 0$ respectively. Compute

$$P(X < Y).$$

Problem 5 (24 points) Let \mathbb{D} denote the diamond

$$\{(x, y) \in \mathbb{R}^2 \mid |x| + |y| \leq 1\}.$$ We take $S = \mathbb{D}$ and \mathcal{F} the usual space of Borel subsets of \mathbb{D}. For the probability of a set $E \in \mathcal{F}$, we take $P(E)$ equal to the area of E divided by 2, i.e.,

$$P(E) = \frac{1}{2} \int_E \text{d}x\text{d}y.$$ Let X be the random variable given by $(x, y) \to x$ and Y the random variable given by $(x, y) \to y$.

1. Verify that the joint density of X and Y is $\frac{1}{2}I_{\mathbb{D}}(x, y)$, where I_E is the indicator function of a set E.

2. What are the density functions of X and of Y?

3. Are X and Y independent?

4. Compute $E(Y^2 | X)$.

Problem 6 (12 points) Let \mathbb{D}, X, Y, \mathcal{F}, and P be as in Problem 5. Let $U = X + Y$ and $V = X - Y$.

1. What are the density functions of U and of V?

2. Are U and V independent?
Problem 7 (12 points) Let \(G(S) = E(s^X) \) be the probability generating function of a random variable \(X \). Assume that \(X \) takes nonnegative integer values, i.e., 0, 1, 2, \ldots, with
\[
P(X = k) = \frac{1}{e \cdot k!}.
\]

1. What is \(G(s) \) in closed form?
2. Using \(G'(1), G''(1), \) and \(G'''(1) \) compute \(E(X^3) \).

Problem 8 (15 points) Let \(X_1, X_2, X_3 \) be three independent exponential random variables with parameter \(\lambda = 1 \) for each integer \(i = 1, 2, 3 \).

1. What is \(E(X_3|X_1, X_2, X_3) \)?
2. What is \(E(X_3|X_1, X_2) \)?
3. What is \(E(X_2X_3|X_1, X_2) \)?