ACMS 40390: Test 2

April 3, 2019

By signing you confirm that you are following the honor code for this test.
Name:
To receive credit you must show your work.

Problem Number	Maximum Points	Points attained
1	7	
2	12	
3	7	
4	7	
5	10	
6	7	
7	9	
8	7	
9	7	
10	10	
11	10	
12	7	
TOTAL	100	

Notation

Letting $f(x) \in C^{5}[a, b]$ with $a<b$, we use the book's notation $S(f, a, b)$ for the Simpson rule approximation to $\int_{a}^{b} f(x) \mathrm{dx}$. We use

$$
\operatorname{Err}(\mathrm{f}, \mathrm{a}, \mathrm{~b}):=\frac{\left|\mathrm{S}(\mathrm{f}, \mathrm{a}, \mathrm{~b})-\mathrm{S}\left(\mathrm{f}, \mathrm{a}, \frac{\mathrm{a}+\mathrm{b}}{2}\right)-\mathrm{S}\left(\mathrm{f}, \frac{\mathrm{a}+\mathrm{b}}{2}, \mathrm{~b}\right)\right|}{15}
$$

as an estimate for the error

$$
\left|\int_{a}^{b} f(x) \mathrm{dx}-\left(\mathrm{S}\left(\mathrm{f}, \mathrm{a}, \frac{\mathrm{a}+\mathrm{b}}{2}\right)+\mathrm{S}\left(\mathrm{f}, \frac{\mathrm{a}+\mathrm{b}}{2}, \mathrm{~b}\right)\right)\right| .
$$

Problems To obtain credit in the following problems you must show your work.

Problem 1 (7 points) We want to approximate

$$
\int_{0}^{1}(1+\pi x)^{2} \sqrt{\sin (\pi x)} \mathrm{d} x
$$

with at most an error of 0.002 . We use the Adaptive Simpson's rule and find

$$
\frac{|S(f, 0,1)-S(f, 0,0.5)-S(f, 0.5,1)|}{15}=0.04976 .
$$

Therefore we subdivide and find

$$
\frac{|S(f, 0,0.5)-S(f, 0,0.25)-S(f, 0.25,0.5)|}{15}=0.00097
$$

and

$$
\frac{|S(f, 0.5,1)-S(f, 0.5,0.75)-S(f, 0.75,1)|}{15}=0.01417
$$

Should we accept the result or should we subdivide further and if so how? Circle one and justify that answer.

1. Accept the result.
2. Subdivide each of $[0,0.25],[0.25,0.5],[0.5,0.75],[0.75,1.0]$.
3. Subdivide only $[0,0.25]$ and $[0.25,0.5]$.
4. Subdivide only $[0.5,0.75]$ and $[0.75,1.0]$.
5. None of the above.

The answer is d) Since $0.00097<0.001$, we may use $S(f, 0,0.25)+$ $S(f, 0.25,0.5)$ as the approximation for

$$
\int_{0}^{0} .5(1+\pi x)^{2} \sqrt{\sin (\pi x)} \mathrm{d} x .
$$

Since $0.01417>0.001$, we need to further subdivide $[0.5,0.75]$ and $[0.75,1.0]$.

Problem 2 (12 points total) Let $y^{\prime}=y^{2}$ on $[-1,1]$ with initial condition $y(-1)=1$.

1. What is an explicit local solution near -1 ?
2. Is there a continuously differentiable solution on all of $[-1,1]$? (Either show there is by explicitly constructing a solution or show there is no solution on all of $[-1,1]$.)

Since

$$
\frac{d y}{y^{2}}=d t
$$

integrates to give

$$
y=-\frac{1}{t+c}
$$

we obtain (using $y(-1)=1$) the local solution

$$
y=-\frac{1}{t}
$$

around $t=-1$.
Since this function doesn't exist at $t=0$, we see the answer to the second question is no.

Problem 3 (7 points total) What integration method does the modified Euler method applied to solving $y^{\prime}=f(t)$ on $[1,2]$ with initial value $y(1)=0$ and $h=1.0$ reduce to. (To receive credit you must show this explicitly.)

The step of the modified Euler method is given by

$$
w:=0+(f(1)+f(1+h)) \frac{h}{2}=\frac{f(1)+f(2)}{2}
$$

which is the trapezoid method.

Problem 4 (7 points total) Use the midpoint method to approximate the solution of $y^{\prime}=t \sin (y)$ on $[0,0.5]$ with initial value $y(0)=\pi$ and $h=0.5$.

Letting $f(t, y)=t \sin (y)$, the step of the midpoint method is given

$$
w_{1}=w_{0}+f\left(0.25, w_{0}+f\left(0, w_{0}\right) 0.25\right) 0.5
$$

This gives

$$
\pi+f(0.25, \pi) 0.5=\pi+0.25 \sin (\pi) 0.5=\pi
$$

Problem 5 (10 points total) Use Taylor's method of order two to approximate the solution of $y^{\prime}=t \sin (y)$ on $[1,1.5]$ with initial value $y(1)=e$ and $h=0.5$.

Differentiating, we see $y(t)^{\prime \prime}=\sin (y)+t \cos (y) t \sin (y)$. Thus the step of the Taylor method of order two is given by

$$
w_{1}=e+\sin (e) 0.5+\cos (e) \sin (e) \frac{0.5^{2}}{2}
$$

Problem 6 (7 points) Use the Euler method with $h=1$ to solve

$$
\begin{aligned}
u_{1}^{\prime} & =-u_{2} \\
u_{2}^{\prime} & =u_{1}
\end{aligned}
$$

on $[0,1]$ with the initial condition

$$
\begin{gathered}
{\left[\begin{array}{l}
u_{1}(0) \\
u_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 .
\end{array}\right] .} \\
{\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .}
\end{gathered}
$$

Problem 7 (9 points) Let

$$
v=\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right]
$$

be a vector in \mathbb{R}^{3}. Compute

1. $\|v\|_{1}=6$
2. $\|v\|_{2}=\sqrt{14}$
3. $\|v\|_{\infty}=3$.

Problem 8 (7 points) Let

$$
A=\left[\begin{array}{lll}
4 & 3 & 0 \\
0 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]
$$

Compute $\|A\|_{\infty}$.

$$
\|A\|_{\infty}=7
$$

Problem 9 (7 points) Let

$$
A=\left[\begin{array}{lll}
4 & 3 & 0 \\
0 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]
$$

Compute $\|A\|_{1}$.

$$
\|A\|_{1}=5
$$

Problem 10 (10 points) Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

Compute $\|A\|_{2}$.
The easiest way to do this is to note the matrix is self-adjoint and therefore that the largest of the absolute values of the eigenvalues, i.e.,

$$
\frac{3+\sqrt{5}}{2}
$$

is the norm.
The other way is to compute

$$
A^{t} A=\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right],
$$

and then compute the square root of the largest of the absolute values of the eigenvalues of $A^{t} A$, i.e.,

$$
\sqrt{\frac{7+3 \sqrt{5}}{2}}
$$

Problem 11 (10 points) Let

$$
v_{1}=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Use the Gram-Schmidt process on v_{1}, v_{2} to find a set of orthogonal vectors.
Let

$$
e=\left[\begin{array}{l}
\frac{3}{5} \\
\frac{4}{5}
\end{array}\right] .
$$

Then we obtain

$$
v_{2}-\left(e^{t} \cdot v_{2}\right) e=\left[\begin{array}{r}
\frac{16}{25} \\
-\frac{12}{25}
\end{array}\right] .
$$

Problem 12 (7 points) Let

$$
A=\left[\begin{array}{llll}
5 & 2 & 2 & 2 \\
1 & 4 & 1 & 0 \\
1 & 1 & 4 & 2 \\
1 & 0 & 0 & 5
\end{array}\right]
$$

Using the Geršgorin Circle Theorem, show that A is nonsingular, i.e., that zero is not an eigenvalue of A.

The horizontal Geršgorin circles all contain 0 , so we use the vertical Geršgorin circles

$$
\begin{aligned}
& |\lambda-5|<3 \\
& |\lambda-4|<3 \\
& |\lambda-4|<3 \\
& |\lambda-5|<4
\end{aligned}
$$

