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Abstract

In this paper we review applications of numerical algebraic geometry
to differential equations. The techniques we address are direct solution,
bootstrapping by filtering, and continuation and bifurcation. We review
differential equations systems with multiple solutions and bifurcations.
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Introduction

Most systems of nonlinear differential equations are not solvable in an explicit
form, nor is the structure of the solutions; the number of solutions; or even the
existence of a single solution with given boundary conditions. For these reasons,
users of mathematics are forced to resort to numerical methods, though for non-
linear systems, traditional numerical methods usually do not suffice.
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In recent years, remarkable progress has been made in the development and im-
plementation of efficient algorithms to numerically solve and manipulate solutions
of systems of polynomial equations. For some background on this field, called Nu-
merical Algebraic Geometry, see [30, 35, 38]. Many systems, when discretized, lead
to systems of polynomials. In the last few years, methods of numerical algebraic
geometry have begun to be used to investigate and solve systems of discretized
nonlinear differential equations.

In this article, we will give an overview of the new approach and some of the
systems that have been successfully investigated and solved by these new methods.
The new approach has been based on combinations of three techniques:

1. direct solution of the polynomial systems that arise [18] and[28, §9.4];

2. bootstrap methods [1, 23] to solve large systems by building up to them
from smaller systems; and

3. construction of new branches of solutions out of existing branches of so-
lutions by computation of bifurcation points and continuation of solutions
along the distinct branches coming out of the the bifurcation points [19, 20,
21, 22, 24, 25, 26].

1 Direct solution

In this section we give some nontrivial examples of systems, where direct solution
has been used. The combination of efficient new parallel algorithms; increasingly
inexpensive clusters; and the polynomial solver Bertini [4] has led to the ability
to solve discretizations with over forty polynomials in forty variables.

Given the exponential growth of the number of numerical solutions of the poly-
nomial systems that arise through discretization as the number of nodes increase,
the direct methods by themselves are hopeless. Nevertheless brute-force methods
do allow significant information to be computed for a number of nontrivial sys-
tems, and combined with the bootstrap approaches explained in §2 and §3 allow
us to compute many solutions for several nontrivial discretizations with thousands
of variables.
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1.1 A Lotka-Volterra population model with diffusion

As a first example, consider the following Lotka-Volterra population model with
diffusion [32, 37] on the first quadrant square R := [0, 1]× [0, 1] ⊂ R2:

−∆u = u(1− v) (1)

−∆v = −v(1− u), (2)

where ∆ is the Laplacian and u and v are functions defined on R, which are taken
some non-zero boundary condition. For example,

u =


0 if x = 0
1 if x = 1
x if y = 0,

sin(x)/ sin(1) if y = 1,

and v =


1 if x = 0,
0 if x = 1,

1− x if y = 0,
sin(1− x)/ sin(1) if y = 1.

Discretizing using central differences with the gridpoints

(xi, yj) =

(
i

5
,

j

n+ 1

)
for 0 ≤ j ≤ 5; 0 ≤ i ≤ n

for some positive integer n, we have the polynomial system with 8n equations

ui+1,j − 2ui,j + ui−1,j

25
+
ui,j+1 − 2ui,j + ui,j−1

(n+ 1)2
+
ui,j(1− vi,j)
25(n+ 1)2

= 0 (3)

vi+1,j − 2vi,j + vi−1,j

25
+
vi,j+1 − 2vi,j + vi,j−1

(n+ 1)2
+
vi,j(ui,j − 1)

25(n+ 1)2
= 0 (4)

with variables {ui,j, vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 4} and constants

u0,j = vn+1,j = 0, un+1,j = v0,j = 1,

ui,0 = i/5, ui,5 =
sin(i/5)

sin(1)
, vi,0 = 1− i/5, vi,5 =

sin(1− i/5)

sin(1)
.

This system, which was investigated numerically by Hauenstein, Hu, and Sommese,
is a good example of the growth of solutions of the discretization as the gridsize
grows. In [28, §9.4] a related (and practically equivalent) polynomial system was
used as one of the test examples for the polynomial-system solving method called
regeneration. All equations are quadratic with total degree 28n, though the sys-
tem has only 24n solutions. Bertini took 7.36 minutes when n = 4 and 3.81 hours
when n = 5 when run in parallel on 64 cores (8 nodes each with two 2.33 GHz
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quad-core Xeon 5410s). Though this grid is fine enough to get some useful infor-
mation, the computing times make clear that (even with more cores), the brute
force approach is limited. The main numerical polynomial system solvers Bertini
[4], HOM4PS-2.0 [29], and PHC [29] were compared on the system of [28, §9.4]:
only Bertini could deal with the larger systems.

Nevertheless direct computation can be very useful in some cases. The pat-
terning model of Zhang, Lander, and Nie[39] leads to a system of four nonlinear
ordinary differential equations of the form (5). We refer to [18], where this system
of differential equations is written out in detail and explained (there are biologi-
cally relevant constants). In non-dimensionalized form the system was shown to
be [18, Eq. 3.6] 

∂A

∂T
=
∂2A

∂X2
+H1(A,B,C, S, T );

∂B

∂T
= H2(A,B);

∂C

∂T
=
∂2C

∂X2
+H3(A, S,C);

∂S

∂T
=
∂2S

∂X2
+H4(A,B,C, T ),

(5)

where 0 ≤ X ≤ 1 and the Hi are some specific (but involved) nonlinear functions..
Using an interval with eleven points, the associated polynomial system was solved
using Bertini. This took about eleven hours using 200 cores (25 nodes each with
two 2.33 GHz quad-core Xeon 5410s). The associated polynomial system had
384,064 complex solutions of which 17,974 were real. Of these, only seven satisfied
the physically necessary condition that they are positive. Three of the seven were
shown to be stable. Many of the seven solutions were new and would have been
very difficult to compute by standard methods such as time-marching.

2 Bootstrapping by filtering

Given the systems in §1, we see that for polynomial system methods to be of broad
use, we need to be able to cut the exponential growth of solutions as the number
of grid points grows. One way to do this [1, 2, 3] is filtering. To explain this
approach consider the example following ordinary differential equation on [0, 1],
which is know to have infinitely many solutions [1, §3.3]:

y′′ = −y3. y(0) = y(1) = 0. (6)
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Discretized we have the polynomial systems FN indexed by integers N ≥ 1

FN(y) :=


y2−2y1
h2 + y3

1
y3−2y2+y1

h2 + y3
2

...
yN−2yN−1+yN−2

h2 + y3
N−1

−2yN+yN−1

h2 + y3
N

 = 0 (7)

for N = 1, 2, 3, . . ., where h = 1/(N + 1), y0 = yN+1 = 0, and for 1 ≤ i ≤ N + 1,
yi is the approximate value of a given possible solution at xi = i/(N + 1). Here
we have presented the system as if N ≥ 4 so that the pattern is clear.

Of course, we cannot numerically compute all solutions since there are an
infinite number, but we would like to compute a good selection of solutions for
increasing N . Only a small fraction (see [1]) of the solutions for any N are real.

The idea of filtering is start with some set UN of isolated solutions of FN(y) = 0.
To get to solutions of FN+1(y) = 0

1. use some filtering condition (for example, having small imaginary parts) to
discard solutions, leaving a set SN of solutions of FN(y) = 0;

2. construct a polynomial system in y1, . . . , yN+1 of the form

Φ(y1, . . . , yN , yN+1) =

[
FN(y1, . . . , yN)

g(y1, . . . , yN , yN+1)

]
= 0;

3. compute the solutions IN+1 of Φ(y1, . . . , yN+1) = 0 with (y1, . . . , yN) = y∗

for some y∗ ∈ SN ;

4. construct a homotopy H(y1, . . . , yN+1, t) = 0 with t ∈ [0, 1]; H(y, 1) = Φ(y);
and H(y, 0) = FN+1(y);

5. use H(y, t) to continue the solutions IN+1 to solutions UN+1 of FN+1 = 0.

This process will typically start with all solutions of FN0 = 0 for a small integer
N0. Clearly there are a lot of choices. Moreover we might add more nodes at each
step.

3 Bootstrapping by Domain Decomposition

Though filtering works well with ordinary differential equations, it, by itself, has
not worked well with systems of nonlinear partial differential equations. In [23],
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we introduce a new bootstrapping method to use domain decomposition to guide
us in building up to a polynomial system (arising by discretization) from simpler
polynomial systems (arising from coarser discretizations and discretizations over
smaller regions). This new method combines well with filtering to yield many
unknown solutions of interesting systems. In [23, §5], this method is used to
yield many highly nontrivial solutions of complicated tumor growth models of the
sort discussed in §4. Here we just give a simple illustrative ordinary differential
equation example.

Consider the system

uxx = f(u) on (0, 1); u(0) = u0, u(1) = u1 (8)

for some polynomial f(u): in the article [23], a number of different f(u) are used
in examples.

Our goal is to first solve Eq. 8 on the interval [0, 1] with NM grid points where
N and M are two small integers. To do this

1. we first solve Eq. 8 for the gridpoints at xi = iH, where i = 0, . . . , N and
H = 1/N and use some filter to discard unreasonable solutions;

2. next we solve
uxx = f(u)

with M gridpoints on each of the intervals [xi, xi+1] with boundary condi-
tions given by using the solutions in step 1); and

3. we use a homotopy to continue the solutions of step 2) into solutions of a
discretization of Eq. 8 with NM gridpoints.

We first solve

CN(u1, . . . , uN−1) =

 u2 − 2u1 + u0 − H2f(u1)
...

uN − 2uN−1 + uN−2 − H2f(uN−1)

 = 0. (9)

Let xi,j = xi + jh where h = 1/M and j = 0, . . . ,M Note that xi,0 = xi and
xi,M = xi+1. We wish to compute an approximation ui,j to a solution u(xi,j) of
Eq. 8 using the discretization with NM − 1 variables and equations

FNM(U) =

 u0,2 − 2u0,1 + u0,0 − (hH)2f(u0,1)
...

uN−1,M − 2uN−1,M−1 + uN−1,M−2 − (hH)2f(uN−1,M−1)

 = 0

(10)
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where we let U denote (u0,1, . . . , u0,M−1, u1,0 . . . , u1,0, . . . , uN−1,0, . . . , uN−1,M−1)
and make the convention that the variables ui,N and ui+1,0 are the same for
i = 0, . . . N − 1, uN−1,M = u(1), and u0,0 = u(0). For each solution (u0, . . . , uN)
of Eq. 9, compute approximate solutions to the systems

uxx = f(u) on [xi, xi+1]; u(xi) = ui, u(xi+1) = ui+1

using the systems

SSi,M(ui,0, ui,1, . . . , ui,M−1, ui,M) =

 ui,2 − 2ui,1 + ui,0 − h2f(ui,1)
...

ui,M − 2ui,M−1 + ui,M−2 − h2f(uM−1)

 = 0

(11)
for i = 0, . . . , N − 1 with u0,0 = u0 and uN−1,M = u1.

We thus have a set of solutions of the composite system

PN(U) =


CN(u0,M , u1,M , . . . , uN−1,M)
SS0,M(u0,0, u0,1, . . . , u0,M)

...
SSN−1,M(uN−1,0, . . . , uN−1,M)

 = 0. (12)

Next we track these solutions as t goes from 1 to 0 using a homotopy such as

H(U, t) = (1− t)FNM(u0,1, . . . , uN−1,M−1) + t


CN(u1, . . . , uN−1)

SS0,M(u0,0, . . . , u0,M)
...

SSN−1,M(uN−1,0, . . . , uN−1,M)

 .
Finally filtering the solutions of H(U, 0).

4 Continuation and Bifurcation

In this section we only discuss the free boundary problems arising in tumor growth
[19, 20, 21, 22, 23] that we have investigated using the new methods. These
methods apply to other biological models [24, 25].

The free boundary problems are of the type

Vn(x, t) = F [O(t), ~u(x, t), λ], x ∈ Γ(t), t > 0, (13)

where ~u(x, t) is typically a solution of a system of partial differential equations in
the domain x ∈ O(t), t > 0 which is changing over time, Vn(x, t) (x ∈ Γ(t)) is the
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normal velocity of the boundary of the domain Γ(t) = ∂O(t), and F is a functional
of the domain O(t) and the function ~u. Typically, F is a nonlinear functional given
by the derivatives of ~u on the boundary Γ(t). Here the parameter λ represents
various physical quantities that may change the behavior of the system.

Let us see how such problems arise in the growth of a solid tumor. Consider
a (very much simplified) biological model of a tumor. In this simplified model,
oxygen and glucose are considered “nutrient”, with its density c satisfying δct −
∆c = −c for x ∈ O(t). Since the rate of diffusion of nutrient is much faster than
the rate of cell proliferation, it is also reasonable to take δ to be zero (Quasi-steady
state approximation). The tumor grows with proliferation rate = µ(c− c̃), where
c̃ is a threshold concentration and µ is a parameter expressing the “intensity” of
the proliferation (if c > c̃) or shrinkage by necrosis (if c < c̃) within the tumor.
By the conservation of mass, proliferation rate = ∇ · ~v, where ~v is the velocity
field within the tumor. If the tissue is assumed to be of porous medium type
where Darcy’s law (i.e., ~v = −∇σ , where σ is the pressure) can be used (here the
extracellular matrix is considered “porous media” in which the cell moves), then
−∆σ = µ(c − c̃), and the system is reduced to finding two unknown functions c
and σ, together with the free boundary Γ(t):

δct −∆c+ c = 0, x ∈ O(t),
c = c̄, x ∈ Γ(t),
−∆σ = µ(c− c̃), x ∈ O(t),
σ = γκ, x ∈ Γ(t),
Vn(t) = −∂σ

∂n
, x ∈ Γ(t),

(14)

where c̄ represents the concentration of the nutrient surrounding the tumor.
Models such as that above are mathematically extremely difficult. For exam-

ple, if we set µ to be zero, then this problem reduces to the classical Hele-Shaw
problem with surface tension (with many works devoted to it in the literature –
searching Hele-Shaw on the title alone on MathSciNet returns 390 entries). Nat-
urally, the tumor aggressiveness constant µ cannot be zero; thus this problem is
more complex than the Hele-Shaw problem and the classical existence of a solu-
tion is in general not expected to be global in time. Fingering phenomenon is well
observed for Hele-Shaw models. For our model, one of the most important ques-
tions is whether the tumor will spread out of control, or remains bounded. Since
the study of the general classical existence (globally in time) becomes unrealistic
(it is known that for Hele-Shaw with surface tension, global classical existence is
not expected globally in time), it is natural to study the radially symmetric case
as the first step. Although the tumor in vivo is unlikely to be radially symmetric,
the tumor in vitro grown in a laboratory is likely to be of spherical shape. Thus
the model does have implications in the application.
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The study of this model started in the 1990’s. In particular, if the tumor
aggressiveness constant µ is large, or if the cell-to-cell adhesiveness constant γ is
small, then the tumor is likely to spread. The radially symmetric case was studied
in [15], where they established rigorously the global classical existence of a solution
under natural biological assumptions; they also established the stability results:
(i) there is a stationary solution under the natural biological data, (ii) for small µ,
the stationary solution is asymptotically stable with respect to radially symmetric
small perturbations. Note that this stability result is expected biologically since,
as indicated above, µ describes the aggressiveness of the tumor.

It is natural to ask what happens to a non-radially symmetric solution. As
mentioned above, the general study of non-radially symmetric solutions is diffi-
cult. Thus, as a first step, we like to start with a question that is simpler and
yet important enough for the application: does a non-radially symmetric solution
exist? This question is answered positively in [16], where they linearize the prob-
lem around a radially symmetric solution and then they formed an analytic series
expansion near the free boundary. For the 2-space dimensional case, through a
careful study using sharp PDE estimates, they proved that the series is conver-
gent, and thus completing the proof of the existence of non-radially symmetric
solution. The proof is limited to 2-space dimensional case since the PDE estimates
are very lengthy and complex – they are of the type of the Cauchy-Kowalevski
theorem. In [8], Hanzawa transformation is used to simplify the proof and extend
the result to 3-space dimensional case.

In a recent series of papers [12, 13, 14] Friedman and Hu have developed bifur-
cation theories and stability theorems, combining Crandall-Rabinowitz theorem
[5] with new estimates on the PDEs in addition to the fundamental PDE estimates
[6, 17, 31]. The methods involve very sharp estimates on the solutions of PDEs,
using dimension reduction by Laplace transform, and explicit expansion into se-
ries of spherical harmonics. They have considered the stationary solutions and
proved, that given any R > 0, one can construct branches of stationary solutions
with any number of fingers, that is, solutions with free boundary

r = R + εYn,0(θ) +O(ε2), n ≥ 2, µ = µn(R) + µn,0(R)ε+O(ε2), (15)

(here we assume γ = 1 for simplicity), for any small ε. In this model µj are
monotone: µ2(R) < µ3(R) < µ4(R) < · · · , for any R > 0. It is clear that the
stability of the stationary solution is lost at the first bifurcation point µ = µ2(R).
Friedman and Hu [12] actually established the stability result for the stationary
solution for all µ < µ∗(R) (here R is the radius of the stationary solution) and
non-stability result for µ > µ∗(R). Furthermore, they rigorously proved that
µ∗(R) < µ2(R) for R < R̄ and µ∗(R) = µ2(R) for R ≥ R̄, for some critical R̄
which can be computed numerically in terms of the tumor aggressiveness constant
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µ and the cell-to-cell adhesiveness constant γ. (It is also not surprising that the
bifurcation result when γ is not normalized to 1 is given in terms of the ratio
µ/γ.)

Of course, the bifurcation rigorously established in (15) describes only the
behavior of stationary solution near the bifurcation point (i.e., |ε| small). In
reality, it is interesting to find out what happens for the bifurcation branch away
from the bifurcation point, and this is where the numerical computation is needed:
to find, by a homotopy method (a frequently used method in the classical study
of PDEs), the steady state branches of solutions as the data moves away from the
bifurcation point. The next task will be to find out the stability of these solutions,
as this will give a strong hint as to whether the tumor will spread out of control.

While Darcy’s law may be a good approximation for some solid tumors, for
several models (ductal carcinoma in breast, brain tumor) the Stokes equation is
more appropriate [9, 10, 11]. In this case the stress tensor is given by σij =

−σδij + 2ν
(
eij −

1

3
∆̄ δij

)
where σ = −1

3
σkk, eij =

1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
is the strain

tensor, ∆̄ = ekk = div~v is the dilation, and ν is the viscosity coefficient. If there

are no body forces then
∂σij
∂xj

= 0, which can be written as the Stokes equation

− ν∆~v +∇σ − 1

3
ν∇div~v = 0, x ∈ O(t), t > 0. (16)

Assuming that the strain tensor is continuous up to the boundary of the domain,
we then obtain a boundary condition:

T~n = −γκ~n, x ∈ Γ(t), t > 0,

where T is the stress tensor: T = ν(∇~v+(∇~v)T )−(σ+ 2
3
ν div~v)I with components

Tij = ν
( ∂vi
∂xj

+
∂vj
∂xi

)
− δij

(
p+

2ν

3
div~v

)
,

~n is the outward normal, and κ is the mean curvature.
The free boundary condition is given by

Vn(t) = ~v · ~n, x ∈ Γ(t). (17)

Replacing, in the tumor model described above, Darcy’s law by Stokes equation
(16) while keeping the rest of the equations, we obtain a free boundary problem
for a coupled system of Stokes equation and a diffusion equation.

The theoretical results established in [7, 12, 13] describe the behavior near
the bifurcation point (i.e., |ε| small). Again, it is interesting to find out what
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happens for the bifurcation branch when the data moves away from the bifurcation
point, and this is where the numerical computation comes in: to find, by the
method of continuation, the steady state solutions as the data moves away from
the bifurcation point, and to find out the stability of these solutions.

The theoretical study of the above tumor problems depends on the explicit
formula of the radially symmetric solution and sharp PDE estimates. Explicit
solutions will not always be available.

For example, let the tumor region be O(t) and assume that there are several
types of cells within the tumor: proliferating cells with density p(x, t), quiescent
cells with density q(x, t). The nutrient density with the tumor is still denoted by
c(x, t). Proliferating cells change into quiescent cells at the rate KR(c), and they
become necrotic at a rate KN(c). We use KB(c) to represents the balance between
birth and death. Then, similar to Problem 1, the equations for conservation of
mass are given by [33, 34]

∂p

∂t
+ div(p~v) = [KB(c)−KQ(c)]p+KR(c)q, x ∈ O(t), (18)

∂q

∂t
+ div(q~v) = KQ(c)p− [KR(c) +KN(c)]q, x ∈ O(t), (19)

where ~v is velocity of the cells within the tumor. This velocity is a result of the
proliferation of cells and removal of necrotic cells. The nutrient c(x, t) diffuses
within the tumor and is therefore modeled by the diffusion equation, as before.

Consider the 2-space dimensional tumor. To handle the free boundary, we
developed a moving grid that evolved with the boundary. Figure 1 shows the grid
for a radially symmetric and a non-radially symmetric solution. Using a third
order discretization scheme with R = 2.5, we computed the radially symmetric
solution for a small random value of µ and then used parameter continuation
implemented in Bertini to track this solution as µ varied.

Since the Jacobian matrix of the discretized polynomial system is rank deficient
when evaluated at the radially symmetric solution corresponding to a (discretized)
bifurcation value of µ, we monitored the condition number of the Jacobian matrix
as we tracked along the branch of radially symmetric solutions. This process
produced a clear indication of a potential (discretized) bifurcation value near
µ = 3.7 as shown in Figure 2. Further calculations, described below, indeed
shows that this value corresponds to an approximation of µ2(R).

To produce a better approximation of the bifurcation value near µ = 3.7,
we setup Bertini to take increasingly smaller steps along the radially symmetric
solution branch near µ = 3.7. The numerically computed value matches the
theoretical value very well, where the two-dimensional theoretical bifurcation value
was derived in the same way as the three-dimensional case. The three-dimensional
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(a) Radially symmetric (b) Non-radially symmetric

Figure 1: Pictures of grids

case was rigorous derived and presented along with a three-dimensional theoretical
bifurcation diagram in [12, 13, 14]. Table 1 compares these bifurcation values on
a sequence of grids with the theoretical value µ2(R) = 3.702687. In this table,
Nθ and NR are the number of grid points in the angular and radial directions,
respectively. It is clear that the numerical value converges to the theoretical value
in our experiment.

Nθ NR µ2 abs. error
40 10 3.725819 0.023132
48 12 3.720450 0.017763
52 13 3.718400 0.015713
60 15 3.715204 0.012517
80 20 3.710412 0.007725

Table 1: Comparing (discretized) bifurcation value of µ2 on a sequence of grids
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Figure 2: Condition number along radially symmetric solution branch as a func-
tion of µ

For these computations, the cost of numerically computing the radially sym-
metric solution is trivial compared with the cost of computing the condition num-
ber of the Jacobian matrix for the discretized system. All computations performed
for this test are naturally parallelizable. For example, when using 200 processing
cores, these computations with Nθ = 40 and NR = 10 took 3 minutes.

We verified the existence of a bifurcation branch by computing the tangent
cone at these values. This produced two tangent directions which correspond
to the radially symmetric branch and a symmetry-breaking branch. The numer-
ically computed tangent direction for the symmetry-breaking branch compares
favorably with its theoretical value, which was derived in the same way as the
three-dimensional case discussed above. After computing the tangent direction
of the symmetry-breaking branch, we forced Bertini to track along this branch.
In Figure 3, we present two solutions computed by tracking in opposite direc-
tions on this non-radially symmetric branch. Since the initial steps along this
symmetry-breaking branch are poorly conditioned, using high precision to per-
form this computation is crucial.

To further verify our numerical computations, we used our most coarse dis-
cretization (Nθ = 40 andNR = 10) to approximate the value of µ4. The discretized
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Figure 3: Non-radially symmetric solutions

value computed was 18.624 which compares favorably with the theoretical value
µ4(R) = 18.649.

Though the solutions, for the two and three-dimensional model problems we
investigated, became nonconvex, the domains remain star-shaped with respect to
the origin and they never reached the point where we had to switch to a more
sophisticated grid. We expect that this will be the case for more complicated
systems and, as needed, will utilize adaptive grid generation.

Building from the success in the 2-space dimensional case, we performed cal-
culations in the 3-space dimensional case. Using spherical polar coordinates and
a discretization with NR = 20, Nθ = 20, and Nφ = 40 grid points in the radial,
inclination, and azimuth directions, respectively, we approximated µ2(R) where
R = 2.5 as above. The discretized value computed was 4.0398 which compares
favorably with the theoretical value of µ2(R) = 4.0422.

As noted above, the theoretical description of the non-radially symmetric solu-
tion branches are known only locally near the bifurcation point, that is, when |ε| is
small. A numerical homotopy allows one to compute data about the non-radially
symmetric solution branch far away from the bifurcation point.

Another problem dealt with was deciding whether a solution of the polynomial
system is a solution of the differential equation. This was accomplished by sharp-
ening the solution to a higher precision; interpolating to a finer grid; refining the
interpolated solution to a solution within the desired tolerance for the polynomial
system associated to the finer grid; and finally comparing the solutions on the
different grids. Deciding whether a point is a solution of a polynomial system is a
basic and nontrivial part of this procedure, which has been dealt with in Bertini
by using multiple levels of precision.

Using adaptive-precision continuation methods, it is straightforward to check
nonlinear stability directly. For example, given a solution of the time-independent
three-dimensional system, we took a random perturbation and checked the devel-
opment of the system with respect to time to numerically verify the stability
results of [12, 13, 14].
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