On the degree and the birationality of the second adjunction mapping

Mauro C. Beltrametti, Andrew J. Sommese

Abstract

Let \mathcal{L} be a very ample line bundle on \mathcal{M}, a projective manifold of dimension $n \geq 3$. Under the assumption that $K_{\mathcal{M}} + (n-2)\mathcal{L}$ has Kodaira dimension n, we study the degree of the map ϕ associated to the complete linear system $|2(K_{\mathcal{M}} + (n-2)\mathcal{L})|$. In particular we show that under a number of conditions, e.g., $n \geq 5$ or $K_{\mathcal{M}} + (n-3)\mathcal{L}$ having nonnegative Kodaira dimension, the degree ϕ is one, i.e., ϕ is birational. We also show that under a mild condition on the linear system $|K_{\mathcal{M}} + (n-2)\mathcal{L}|$ satisfied for all known examples, ϕ is birational unless $(\mathcal{M}, \mathcal{L})$ is a three dimensional variety with very restricted invariants. Moreover there is an example with these invariants such that $\deg \phi = 2$.

1991 Mathematics Subject Classification. Primary 14C20, 14E05; Secondary 14J99, 14M99.

Keywords and phrases. Smooth complex polarized n-fold, very ample line bundle, adjunction theory, log-general type, second adjunction mapping, birational map.

Introduction

Let \mathcal{L} be a very ample line bundle on an n-dimensional projective manifold \mathcal{M}. We assume throughout this introduction that $n \geq 3$ and also that $\kappa(K_{\mathcal{M}} + (n-2)\mathcal{L}) = n$, i.e., that the Kodaira dimension of $K_{\mathcal{M}} + (n-2)\mathcal{L}$ is n. This condition on the Kodaira dimension is satisfied except for a short list of special varieties $(\mathcal{M}, \mathcal{L})$ (see e.g., [2]).

The condition $\kappa(K_{\mathcal{M}} + (n-2)\mathcal{L}) = n$ implies that \mathcal{M} is the blowing up of a projective manifold M, $\pi : \mathcal{M} \to M$, at a finite set such that $K_{\mathcal{M}} + (n-2)\mathcal{L} \cong \pi^*(K_M + (n-2)L)$, where $L := (\pi_*\mathcal{L})^{**}$ is an ample line bundle, $K_M + (n-1)L$ is very ample, and $\mathcal{K}_M := K_M + (n-2)L$ is nef. Thus the a priori meromorphic map associated to $|2(K_{\mathcal{M}} + (n-2)\mathcal{L})|$ factors as π composed with the mapping associated to $|2\mathcal{K}_M|$. It is a theorem of the second author (see [2, (13.2.5)]) that in the situation of this paper $2\mathcal{K}_M$ is spanned. Thus we are reduced to describing the structure of the morphism $\phi : M \to \mathbb{P}_c$ associated to $|2\mathcal{K}_M|$. The morphism ϕ factors as $r \circ s$, where $r : M \to Y$ is a birational morphism with connected fibers onto a normal projective variety Y and s is finite. The structure of r is completely understood; cf., [2, 12] for a description of this map.
In Theorem (2.1) we show that under the added assumption that there is a smooth divisor \(A \in |\mathcal{K}_M| \) the map \(s \) (and hence \(\phi \)) is birational unless \(n = 3 \), \(\mathcal{K}_M^3 = 1, \mathcal{K}_M^2 \cdot L = 3, \mathcal{K}_M \cdot L^2 = 9 \), and \(A \) is a Del Pezzo surface with \(K^3_A = 1 \). There is moreover a degree 27 threefold \(M \subset \mathbb{P}^{13} \) with these invariants and with \(\deg \phi = 2 \) (see (2.2)). Though we expect such a smooth \(A \) to exist always, this is not known. We show that, without any assumption on the existence of a smooth \(A \in |\mathcal{K}_M| \),

1) the same conclusion holds under the added hypothesis that \(n = \dim M \geq 5 \) (see Corollary (2.4));

2) the morphism \(\phi \) is birational if \(\kappa(K_M + (n - 3)L) \geq 0 \) (see Theorem (2.3)); and

3) \(\deg \phi \leq 7 \) if \(n = 3 \) (see Theorem (3.1)).

The authors would like to thank the Max-Planck-Institut für Mathematik in Bonn, where a large part of the work was done. The second author would also like to thank the Alexander von Humboldt Stiftung for its support.

1 Background material

We work over the complex field \(\mathbb{C} \). Throughout the paper we deal with projective varieties \(V \). We denote by \(\mathcal{O}_V \) the structure sheaf of \(V \) and by \(K_V \) the canonical bundle. For any coherent sheaf \(\mathcal{F} \) on \(V \), \(h^i(\mathcal{F}) \) denotes the complex dimension of \(H^i(V, \mathcal{F}) \).

Let \(L \) be a line bundle on \(V \). The line bundle \(L \) is said to be numerically effective (nef, for short) if \(L \cdot C \geq 0 \) for all effective curves \(C \) on \(V \). \(L \) is said to be big if \(\kappa(L) = \dim V \), where \(\kappa(L) \) denotes the Kodaira dimension of \(L \). If \(L \) is nef then this is equivalent to \(c_1(L)^n > 0 \), where \(c_1(L) \) is the first Chern class of \(L \) and \(n = \dim V \).

1.1 Notation. The notation used in this paper are standard from algebraic geometry. Let us only fix the following.

\(\approx \), the linear equivalence of line bundles;

\(\chi(L) = \sum_i (-1)^i h^i(L) \), the Euler characteristic of a line bundle \(L \);

\(|L| \), the complete linear system associated to a line bundle \(L \);

\(\Gamma(L) \), the space of the global sections of a line bundle, \(L \), on a variety \(V \); we say that \(L \) is spanned if it is spanned at all points of \(V \) by \(\Gamma(L) \);

\(q(V) = h^1(\mathcal{O}_V) \), the irregularity, for \(V \) smooth;

\(\kappa(D) \), the Kodaira dimension of the line bundle associated to a Cartier divisor \(D \) on \(V \);
\[\kappa(V) := \kappa(K_V), \] the Kodaira dimension of \(V \), for \(V \) smooth.

Line bundles and divisors are used with little (or no) distinction. We almost always use the additive notation.

1.2 Genus formula. For a line bundle \(L \) on an irreducible normal variety \(V \) of dimension \(n \) the sectional genus, \(g(L) = g(V, L) \), of \((V, L) \) is defined by \(2g(L) - 2 = (K_V + (n - 1)L) \cdot L^{n-1} \). Note that if \(|L| \) contains \(n - 1 \) elements \(H_1, \ldots, H_{n-1} \) meeting in a reduced irreducible curve \(C \) contained in the smooth points of \(V \), then \(g(L) = g(C) = 1 - \chi(\mathcal{O}_C) \), the arithmetic genus of \(C \).

1.3 Castelnuovo’s bound. Let \(C \) be a reduced irreducible projective curve. Assume that \(\psi : C \to \mathbb{P}^N \) is a generically one-to-one morphism, and that \(\psi(C) \) does not lie in any hyperplane. Let \(d \) denote the degree of \(\psi(C) \) in \(\mathbb{P}^N \). Let \(g(C) \) be the arithmetic genus of \(C \). Then Castelnuovo’s bound (see, e.g., [6, Theorem 3.7]) reads

\[
g(C) \leq \text{Castel}(d, N) := \left[\frac{d - 2}{N - 1} \right] \left(d - N - \left(\left[\frac{d - 2}{N - 1} \right] - 1 \right) \frac{N - 1}{2} \right),
\]

where \(\left[x \right] \) means the greatest integer \(\leq x \).

1.4 Reductions. (See e.g., [2, Chapters 7, 12]). Let \((\mathcal{M}, \mathcal{L}) \) be a smooth variety of dimension \(n \geq 2 \) polarized with a very ample line bundle \(\mathcal{L} \). A smooth polarized variety \((\mathcal{M}, \mathcal{L}) \) is called a reduction of \((\mathcal{M}, \mathcal{L}) \) if there is a morphism \(\pi : \mathcal{M} \to M \) expressing \(\mathcal{M} \) as the blowing up of \(X \) at a finite set of points, \(B \), such that \(L := (\pi_* \mathcal{L})^* \) is ample and \(\mathcal{L} \approx \pi^* L - [\pi^{-1}(B)] \) or, equivalently, \(K_M + (n - 1) \mathcal{L} \approx \pi^* (K_M + (n - 1) L) \).

Note that there is a one-to-one correspondence between smooth divisors of \(|L| \) which contain the set \(B \) and smooth divisors of \(|\mathcal{L}| \).

Except for an explicit list of well understood pairs \((\mathcal{M}, \mathcal{L}) \) (see in particular [2, §§7.2, 7.3, 7.4]) we can assume:

a) \(K_M + (n - 1) \mathcal{L} \) is spanned and big, and \(K_M + (n - 1) L \) is very ample. Note that this reduction, \((M, L) \), is unique up to isomorphism. We will refer to it as the first reduction of \((\mathcal{M}, \mathcal{L}) \);

b) \(K_M + (n - 2) L \) is nef and big, for \(n \geq 3 \).

Since by the above we can assume that \(K_M + (n - 2) L \) is nef and big, from the Kawamata-Shokurov base point free theorem (see [7, §3]) we know that \(m(K_M + (n - 2) L) \), for \(m \gg 0 \), gives rise to a morphism \(\varphi : M \to X \) with connected fibers and normal image. Thus there is an ample line bundle \(\mathcal{K} \) on \(X \) such that
\(K_M + (n-2)L \approx \varphi^*K \). The morphism \(\varphi \) is very well behaved (see e.g., [2, §§7.5, 7.6, 7.7 and Chapter 12]). Furthermore \(X \) has terminal, 2-Gorenstein (i.e., \(2K_X \) is a line bundle) isolated singularities and \(K \approx K_X + (n-2)D \), where \(D := (\varphi_*L)'' \) is a 2-Cartier divisor such that \(2L \approx \varphi^*(2D) - \Delta \) for some effective divisor \(\Delta \) on \(M \) which is \(\varphi \)-exceptional and \(\dim \varphi(\Delta) \leq 1 \) (see [2, (7.5.7)]). The pair \((X, D)\) is known as the second reduction of \((\mathcal{M}, \mathcal{L})\). For definition and properties of terminal singularities we also refer to [7].

We say that \((\mathcal{M}, \mathcal{L})\) is of log-general type if \(\kappa(K_M + (n-2)\mathcal{L}) = n \). Notice that this is equivalent to saying that \(K_M + (n-2)L \) is nef and big (see [2, (7.6.9)]). Let \(\hat{S} \) be the smooth surface obtained as transversal intersection of \(n-2 \) general members of \(\mathcal{L} \) and let \(S := \pi(\hat{S}) \) be the corresponding smooth surface in \(M \). Since \(K_M + (n-2)L \) is nef and big the canonical bundle \(K_S \) of \(S \) is nef and big, so that \(S \) is a minimal surface of general type (see also [2, (7.6.10)]). We have

\[
K_S \cdot K_S < 9\chi(O_S). \tag{2}
\]

Indeed, Miyaoka’s inequality yields \(K_S \cdot K_S \leq 9\chi(O_S) \). Note that the equality cannot happen. Otherwise \(S \) is ball quotient and hence a \(K(\pi, 1) \), which contradicts [2, (1.3)].

For further properties of log-general type polarized pairs see, e.g., [2, §13.2] and [3, (0.10)].

1.5 Pluridegrees. Let \((\mathcal{M}, \mathcal{L})\), \((M, L)\) be as in \((1.4)\). Define the pluridegrees, for \(j = 0, \ldots, n = \dim \mathcal{M} \), by

\[
\hat{d}_j := (K_M + (n-2)\mathcal{L})^j \cdot \mathcal{L}^{n-j} \quad \text{and} \quad d_j := (K_M + (n-2)L)^j \cdot L^{n-j}. \]

If \(\gamma \) denotes the number of points blown up under \(\pi : \mathcal{M} \to M \), then because \(K_M + (n-2)\mathcal{L} \approx \pi^*(K_M + (n-2)L) + \sum_i E_i \), \(E_i \) the exceptional divisors, the invariants \(\hat{d}_j, d_j \) are related by

\[
\hat{d}_j = d_j - (-1)^j \gamma.
\]

We put \(\hat{d} := \hat{d}_0 \), \(d := d_0 \). If \(K_M + (n-2)L \) is nef, by the generalized Hodge index theorem (see e.g., [2, (2.5.1), (13.1)]) one has

\[
d_j^2 \geq d_{j-1}d_{j+1}, \quad j = 1, \ldots, n-1, \tag{3}
\]

and the parity Lemma (13.1.1) of [2] says that

\[
d_j \equiv d_{j+1} \mod(2) \quad \text{for} \quad j = 0, \ldots, n-1 \quad \text{and} \quad j \text{ even}. \tag{4}
\]

Moreover if \(K_M + (n-2)L \) is nef and big, i.e., if \((\mathcal{M}, \mathcal{L})\) is of log-general type, the \(d_j \)'s are positive.
If the second reduction, $(X, \mathcal{D}), \varphi : M \to X$, with $\mathcal{D} = (\varphi_*L)^\times, \mathcal{K} \approx K_X + (n - 2)\mathcal{D}$, of (M, \mathcal{L}) exists, then we define

$$d^j_0 := \mathcal{K}^j \cdot \mathcal{D}^{n-j}, \quad j = 0, \ldots, n, \quad d^j := d^j_0.$$ Note that $d_j = d^j_0$ for $j \geq 2$. To see this recall that $2L \approx \varphi^*(2\mathcal{D}) - \Delta$ for some effective Cartier divisor Δ which is φ-exceptional (see (1.4)) and compute, for $j \geq 2$,

$$2^{n-j}d_j = (K_M + (n - 2)L)^j \cdot (2L)^{n-j} = (\varphi^*\mathcal{K})^j \cdot (\varphi^*(2\mathcal{D}) - \Delta)^{n-j} = 2^{n-j}\mathcal{K}^{n-j} \cdot \mathcal{D}^j = 2^{n-j}d^j_0,$$

where the last but one equality follows from the fact that $\dim \varphi(\Delta) \leq 1$.

The following is a consequence of the Tsuji inequality (see [13, (5.2)]), the log version of the usual Yau inequality (see also [2, (13.1.7), (13.1.8)]).

Proposition 1.6 (Tsuji inequality) Let \mathcal{M} be a smooth 3-fold polarized by a very ample line bundle \mathcal{L}. Assume that the first reduction, (M, L), of (M, \mathcal{L}) exists. Let $d_j, 0 \leq j \leq 3$, be the pluridegrees of (M, L). Assume that $K_M + L$ is nef. Let S be a smooth element in $[L]$. Then we have

$$(K_M + L)^3 + \frac{8}{3}K_S \cdot L_S \leq 32(2h^0(K_M + L) - \chi(\mathcal{O}_S)), \quad \text{or}$$

$$h^0(K_M + L) \geq \frac{\chi(\mathcal{O}_S)}{2} + \frac{d_1}{24} + \frac{d_3}{64}.$$

The following lower bound for the degree is not optimal, but it is sufficient for our purposes.

Lemma 1.7 Let \mathcal{M} be a smooth n-fold polarized by a very ample line bundle \mathcal{L}. Assume that $(\mathcal{M}, \mathcal{L})$ is of log-general type. Let (M, L) be the first reduction of $(\mathcal{M}, \mathcal{L})$. Then either $[\mathcal{L}]$ embeds \mathcal{M} in \mathbb{P}^{n+1} or $d \geq \hat{d} := \mathcal{L}^n \geq 8$.

Proof. We can assume that $\Gamma(\mathcal{L})$ embeds \mathcal{M} in \mathbb{P}^N with $N \geq n + 2$. Let \hat{S} be the smooth surface obtained as transversal intersection of $n - 2$ general members of $[\mathcal{L}]$. Since \hat{S} is of general type we have by a result of Castelnuovo (see [2, (8.1)], [9, (0.6)]) that $\hat{d} > 2(N - n) + 2 \geq 6$. Thus $d \geq \hat{d} \geq 7$. Assume $\hat{d} = 7$. Then $N = n + 2$ since otherwise $\hat{d} > 2(N - n) + 2 \geq 8$. Thus by Castelnuovo’s bound we conclude that $g(C) \leq 6$ for any smooth curve section C of $\mathcal{M} \subset \mathbb{P}^{n+2}$. Therefore, by the genus formula, $7 + d_1 \leq 7 + \hat{d}_1 = 2g(C) - 2 \leq 10$, or $d_1 \leq 3$. But then $d_2 \leq 1$ by the Hodge index relation $d_1^2 \geq dd_2$. Since $(\mathcal{M}, \mathcal{L})$ is of log-general type we know that $d_j \geq 1$ for each $j = 1, \ldots, n$. Therefore we conclude that $d_2 = 1$ and $d_2^2 \geq d_1d_3$ implies $d_1 = 1$. This gives the absurdity that $d = 1$. Q.E.D.
2 Two birationality results for the second adjunction mapping

Let \mathcal{M} be a smooth connected n-fold polarized by a very ample line bundle \mathcal{L}, $n \geq 3$. Assume that $(\mathcal{M}, \mathcal{L})$ is of log-general type. Let $\pi : (\mathcal{M}, \mathcal{L}) \to (M, L)$, $\varphi : (M, L) \to (X, D)$, $\mathcal{K} \approx K_X + (n-2)\mathcal{D}$, be the first and the second reductions of $(\mathcal{M}, \mathcal{L})$ as in (1.4).

Set $\mathcal{K}_M := K_M + (n-2)L$. In this section we study the birationality of the map given by the complete linear system $|2\mathcal{K}_M|$ under the assumption that $|K_M + (n-2)L|$ contains a smooth element (see (2.1)). We consider this result to be one of the most important results in this paper since it is likely optimal. We also prove the birationality of $|2\mathcal{K}_M|$ in the case when $\kappa(K_M + (n - 3)\mathcal{L}) \geq 0$ (see (2.3)).

Note that, since $\mathcal{K}_M \approx \varphi^*\mathcal{K}$, the map associated to $|2\mathcal{K}|$ is a birational morphism if and only if the map associated to $|2\mathcal{K}_M|$ is a birational morphism.

Let us recall the following basic result of the second author (see e.g., [2, (13.2.5)])

- With the notations as above, assume that $(\mathcal{M}, \mathcal{L})$ is of log-general type. Then $2\mathcal{K}_M$ is spanned by its global sections.

The first result we have is the following.

Theorem 2.1 Let \mathcal{M} be a smooth connected n-fold polarized by a very ample line bundle \mathcal{L}, $n \geq 3$. Assume that $(\mathcal{M}, \mathcal{L})$ is of log-general type. Let $\pi : (\mathcal{M}, \mathcal{L}) \to (M, L)$ be the first reduction of $(\mathcal{M}, \mathcal{L})$. Let $\mathcal{K}_M := K_M + (n-2)L$. Assume that there exists a smooth element A in the complete linear system $|\mathcal{K}_M|$. Then the map associated to $|2\mathcal{K}_M|$ is a birational morphism unless $n = 3$, $d_3 = 1$, $d_2 = 3$, $d_1 = 9$ and A is a Del Pezzo surface with $K_A^2 = 1$.

Proof. Let L_A be the restriction of L to A. Consider on M the exact sequence

$$0 \to K_M + (n - 2)L \to 2\mathcal{K}_M \to K_A + (\dim A - 1)L_A \to 0.$$

Since $2\mathcal{K}_M$ is spanned by \bullet and $h^1(K_M + (n - 2)L) = 0$ we see that $K_A + (\dim A - 1)L_A$ is spanned and defines a morphism ψ_A which coincides with the restriction, ϕ_A, of the morphism ϕ associated to $|2\mathcal{K}_M|$. Note that the connected part of the morphism ψ_A is the first reduction map, $\pi_A : A \to A'$, of the pair (A, L_A) and that the positive dimensional fibers of π_A are contained in the exceptional set of ϕ. We have $\psi_A = s_A \circ \pi_A$, where $s_A : A' \to \mathbb{P}_C$ is a finite-to-one morphism.

Assume first $n \geq 4$. Then by a well known result due to the second author and Van de Ven (see e.g., [2, (11.3.1)]), s_A is an embedding. Let t be the sheet number of ϕ, i.e., ϕ is a generically t-to-one morphism. Choose a general point $x \in M$. Then $\phi^{-1}(\phi(x))$ consists of t distinct points. Note that, since $2A$ belongs to the linear system defining ϕ, a smooth element $A \in |\mathcal{K}_M|$ containing x contains all the t points. Therefore $\psi_A^{-1}(\psi_A(x))$ consists of t distinct points and hence, since s_A is an embedding, $\pi_A^{-1}(\pi_A(x))$ consists of t distinct points. This contradicts the fact that π_A has connected fibers. Thus we conclude that $t = 1$.

6
It remains to consider the case when $n = 3$. In this case exactly the same argument works unless the polarized surface (A, L_A) is one of the four exceptional pairs described e.g., in [2, (10.3.1)].

The first possibility is that A is a degree 9 Del Pezzo surface, $K_A^2 = 1$, $L_A \approx -3K_A$. Then $L_A \approx -3(2K_M + L)_A$, or $(6K_M + 4L)_A \approx O_A$. It thus follows that $(3K_M - L)_A \approx O_A$ and hence, since $A \in |K_M|$, we have $(3K_M - L) \cdot K_M \cdot D = 0$ for any effective divisor D on M. Therefore, by taking $D = A$ and $D = L$, we find $3d_3 = d_2$ and $3d_2 = d_1$ respectively. Thus $d_1 = 9d_3$. If $d_3 = 1$, we have $d_1 = 9$, $d_2 = 3$ and we find the 3-dimensional exceptional case as in the statement. Note that the case $d_3 \geq 2$ cannot occur, since in this case $d_1 \geq 18$ and we get the numerical contradiction $9 = L_A \cdot L_A = L \cdot L \cdot K_M = d_1 \geq 18$.

The second possibility is that A is a degree 8 Del Pezzo surface, $K_A^2 = 2$, $L_A \approx -2K_A$. The same argument as in the case considered above gives now $(4K_M - L)_A \approx O_A$ and hence $d_1 = 4d_2$, $d_2 = 4d_3$. Thus we find the numerical contradiction $8 = L_A \cdot L_A = L \cdot L \cdot K_M = d_1 = 16d_3$.

The third possibility is when A is the blowing up at one point, $r : A \to A'$, of a degree 8 Del Pezzo surface (A', L') with $L' \approx -2K_{A'}$, $K_{A'}^2 = 2$. In this case $2K_A + L_A \approx r^*(2K_{A'} + L') + \ell \approx \ell$, where ℓ is the exceptional line of r. Therefore $2K_A + L_A$ has a section. Since $A \in |K_M|$ it follows from $K_A \approx (2K_M - L)_A$ that $(4K_M + 3L)_A \approx (4K_M - L)_A$ has a section. Then from

$$(4K_M - L) \cdot K_M = (4K_M - L)_A \cdot K_M|_A = (2K_A + L_A) \cdot K_M|_A = \ell \cdot K_M|_A = 0$$

and

$$(4K_M - L) \cdot K_M \cdot L = (2K_A + L_A) \cdot L = \ell \cdot L_A = 1$$

we get $4d_3 = d_2$ and $4d_2 = d_1 + 1$ respectively. But $d_1 = K_M \cdot L \cdot L = L_A \cdot L_A = 7$, so that we find the numerical contradiction $7 = d_1 = 16d_3 - 1 \geq 15$.

The fourth possibility is when A is a \mathbb{P}^1-bundle over a smooth elliptic curve of invariant $e = -1$, $L_A \approx 3E$, E a section of minimal self-intersection. Let $f \cong \mathbb{P}^1$ be a fiber of the \mathbb{P}^1-bundle. Then $K_A \approx -2E + f$ and $(K_A + L_A) \cdot L_A = (E + f) \cdot 3E = 6$. Thus from $2L_A \cdot K_M|_A = (K_A + L_A) \cdot L_A = 6$ we get $L_A \cdot K_M|_A = L \cdot K_M = K_M|_A = d_2 = 3$. Moreover $d_1 = L_A \cdot L_A = 9$, so that the Hodge inequality $d_1 \cdot d_3 \leq d_2^2$ yields $d_3 = 1$. This gives the contradiction $g(M) = 0 ([4, (3.2)])$. Q.E.D.

Example 2.2 Notation as in (2.1). Note that the exceptional case of a polarized 3-fold (M, L) with the morphism associated to $|2(K_M + L)|$ not birational and with invariants $d_3 = 1$, $d_2 = 3$, $d_1 = 9$ as in (2.1) really occurs. The example in [8] has $\mathcal{L} = 3H$ very ample with $K_M \cong -2H$. Thus all reduction maps are isomorphisms with $K_M = K_M + L \approx H$ having $h^0(K_M) = 3$, $d_3 = K_M^3 = 1$, $d_2 = K_M^2 \cdot \mathcal{L} = 3H^3 = 3$, $d_1 = K_M^2 \cdot \mathcal{L} = 3H^3 = 9$. The morphism ϕ associated to $|2K_M|$ has degree 2 (see also [11, (5.3)])]. Indeed, from the exact sequence

$$0 \to K_M \cong H \to 2H \to 2H_H \to 0,$$

we obtain $h^0(2K_M) = 7$ and $\phi : M \to \mathbb{P}^6$ maps M surjectively onto the cone $\mathbb{P}(O_{\mathbb{P}^2} \oplus O_{\mathbb{P}^2}(2))$ over $(\mathbb{P}^2, O_{\mathbb{P}^2}(2))$. Since $(2K_M)^3 = 8$ and the tautological bundle of $\mathbb{P}(O_{\mathbb{P}^2} \oplus O_{\mathbb{P}^2}(2))$ satisfies $\xi^3 = 4$ we conclude that ϕ has degree 2.
A second result we have is the following.

Theorem 2.3 Let \mathcal{M} be a smooth connected n-fold polarized by a very ample line bundle \mathcal{L}, $n \geq 3$. Assume that $\kappa(K_{\mathcal{M}} + (n - 3)\mathcal{L}) \geq 0$. Let $\pi : (\mathcal{M}, \mathcal{L}) \to (M, L)$ be the first reduction of $(\mathcal{M}, \mathcal{L})$. Let $K_{\mathcal{M}} := K_M + (n - 2)L$. Then the map associated to $|2K_{\mathcal{M}}|$ is a birational morphism.

Proof. We claim that $d_2 := K_S^2 \geq 10$, where $S = \pi(\hat{S})$ and \hat{S} is the transversal intersection of $n - 2$ general members of $|\mathcal{L}|$. To see this consider the 3-fold section $\mathcal{V} = \mathcal{V}_3$ of \mathcal{M} obtained as transversal intersection of $n - 3$ general members of $|\mathcal{L}|$. Let $\mathcal{L}_\mathcal{V}$ be the restriction of \mathcal{L} to \mathcal{V}. Let $V := \pi(\mathcal{V})$ and let L_V be the restriction of L to V. Then the reduction is compatible with the restriction, i.e., (\mathcal{V}, L_V) is the first reduction of (V, L_V). Let $d = d_0, d_1, d_2, d_3$ be the pluridegrees of (V, L_V) as in (1.5), so that $d_2 = K_S^2$. Note that the assumption $\kappa(K_{\mathcal{M}} + (n - 3)\mathcal{L}) \geq 0$ implies $\kappa(V) \geq 0$. Then from [12, (1.5), (3.1)] we know that

$$d_3 \geq d_2 \geq d_1 \geq d.$$

(5)

From Lemma (1.7) we have $d \geq 8$. First consider the case when $|\mathcal{L}_\mathcal{V}|$ embeds \mathcal{V} in $\mathbb{P}^N, N \geq 6$. If $d = 8, 9$, Castelnuovo’s bound (1.3) gives $g := g(\mathcal{L}_\mathcal{V}) \leq 5, 7$ respectively. Since $d_1 \geq d$ by (5) the genus formula $d + d_1 = 2g - 2$ gives a numerical contradiction.

Thus we can assume that $|\mathcal{L}_\mathcal{V}|$ embeds \mathcal{V} in \mathbb{P}^5. By looking over the list of small degree 3-folds in \mathbb{P}^5 (see e.g., [5, Chapter 6]) we see that the only possible cases with $d = 8, 9$ are when \mathcal{V} is the complete intersection of either a quadric and a quartic or two cubics in \mathbb{P}^5 and $\mathcal{L}_\mathcal{V} = \mathcal{O}_V(1)$. Accordingly, \mathcal{M} is the complete intersection either of type $(2, 4)$ or of type $(3, 3)$ in \mathbb{P}^{n+2} with $\mathcal{L} \approx \mathcal{O}_M(1)$. In both cases $K_{\mathcal{M}} + (n - 2)\mathcal{L}$ is very ample. Thus from now on we can assume that $d_2 \geq 10$.

First assume $n = 3$, so that $\kappa(M) \geq 0$. Recalling \bullet, consider the morphism $\phi : M \to Y$ associated to $|2K_{\mathcal{M}}|$. Assume that ϕ is not birational, i.e., is not generically one-to-one. Thus there exists a dense open set $U \subset Y$ such that for any point $y \in Y$, the fiber $\phi^{-1}(y)$ contains at least two points $x_1 := x_{1,y}, x_2 := x_{2,y}$ (depending on y) such that $\phi(x_1) = \phi(x_2) = y$. From a Bertini’s type theorem (see e.g., [2, (1.7.9)]) we know that there is a smooth surface $\hat{S} \in |\mathcal{L}|$ passing through $\pi^{-1}(x_1), \pi^{-1}(x_2)$. Then the image $S = \pi(\hat{S})$ is a smooth surface in $|L|$ passing through x_1, x_2.

The exact sequence

$$0 \to K_M + K_N \to 2K_M \to 2K_S \to 0$$

gives a surjection $\Gamma(2K_M) \to \Gamma(2K_S) \to 0$. Thus we see that ϕ restricts to the bicanonical map ϕ_S associated to $|2K_S|$. Hence in particular ϕ_S is not an embedding. Recall that S is a minimal surface of general type under our assumptions (see (1.4)). Then we know by Reider’s theorem (see e.g., [2, (8.5.1)]) that there exists an effective curve $C_y \subset S$, C_y depending on y and containing x_1, x_2, such that

$$K_S \cdot C_y - 2 \leq C_y \cdot C_y < \frac{K_S \cdot C_y}{2} < 2.$$

8
Therefore, since K_S is nef, we have $0 \leq K_S \cdot C_y \leq 3$. The case $K_S \cdot C_y = 3$ is excluded. Indeed in this case $C_y^2 = 1$ and the Hodge index relation $d_2 \leq K_S^2 C_y^2 \leq (K_S \cdot C_y)^2$ contradicts the assumption $d_2 \geq 10$.

Note that when y varies in U, the curves $\{C_y\}_{y \in U}$ cover a dense open set $\phi^{-1}(U)$ of M. This is clear since the points $x_{1,y}, x_{2,y}$ cover $\phi^{-1}(U)$.

Assume $K_S \cdot C_y = 0$. Then, by the genus formula, $C_y^2 = -2$ and C_y is the union of rational curves. Thus by the above, there is a dense open set $U \subset M$ covered by rational curves. This contradicts the assumption $\kappa(M) \geq 0$ (see e.g., [10, Part I, (5.8)]). Since $\kappa(M) \geq 0$, a multiple tK_M of the canonical bundle K_M is effective for some $t \gg 0$. Since the curve C_y moves it thus follows that $K_M \cdot C_y \geq 0$.

If $K_S \cdot C_y = 1, 2$, from $K_S \cdot C_y = (K_M + L) \cdot C_y \geq L \cdot C_y$ we obtain $L \cdot C_y \leq 2$. Since L is very ample outside of a finite set of points, this implies that C_y is a rational curve. Thus we conclude as in the previous case.

It remains to consider the general case when $n \geq 4$. Let \mathcal{V}_t be the t-fold section of \mathcal{M} obtained as transversal intersection of $n-t$ general members of $|\mathcal{L}|$, $t = 2, \ldots, n$, $\mathcal{V}_n := \mathcal{M}$, $\mathcal{V}_2 := \hat{S}$. Let \mathcal{L}_t be the restriction of \mathcal{L} to \mathcal{V}_t. Let $\nu_t := \pi(\mathcal{V}_t)$ and let \mathcal{L}_t be the restriction of L to ν_t. Reductions are compatible with restrictions, i.e., (ν_t, \mathcal{L}_t) is the first reduction of $(\mathcal{V}_t, \mathcal{L}_t)$. Set $\mathcal{K}_t := \mathcal{K}_{\nu_t} + (t-2)L_t$. Consider the exact sequence, for $t = 3, \ldots, n-1$,

$$0 \to \mathcal{K}_{\nu_t} + \mathcal{K}_t + (n-3)L_t \to 2\mathcal{K}_t \to 2\mathcal{K}_{t-1} \to 0,$$

which gives a surjective map $\Gamma(2\mathcal{K}_t) \to \Gamma(2\mathcal{K}_{t-1})$. Assuming ϕ is not birational and using induction on t, we conclude as above that the bicanonical map of the surface section $V_2 := S$ of M with respect to L is not an embedding. Recalling that the assumption $\kappa(K_M + (n-3)\mathcal{L}) \geq 0$ implies $\kappa(\mathcal{V}_3) = \kappa(V_3) \geq 0$, the above argument shows that we can reduce to the 3-fold case. Q.E.D.

By using results from [1] we obtain from Theorem (2.3) the following rather strong consequence.

Corollary 2.4 Let \mathcal{M} be a smooth connected n-fold polarized by a very ample line bundle \mathcal{L}. Assume that $(\mathcal{M}, \mathcal{L})$ is of log-general type. Let $\pi : (\mathcal{M}, \mathcal{L}) \to (M, L)$, $\varphi : (M, L) \to (X, \mathcal{D})$, $K \approx K_X + (n-2)\mathcal{D}$, be the first and the second reductions of $(\mathcal{M}, \mathcal{L})$. Let $\mathcal{K}_M := K_M + (n-2)L$. If $n \geq 5$, then the map associated to $|2\mathcal{K}_M|$ is a birational morphism.

Proof. First assume $n \geq 7$. Then by [1, (3.1)] we know that $K_X + (n-3)\mathcal{K}$ is nef. Thus $t(K_X + (n-3)\mathcal{K})$ is effective for some integer $t \in \mathbb{Z}$, i.e., $K_X + (n-3)\mathcal{K}$ is \mathbb{Q}-effective. Therefore $\kappa(K_X + (n-3)\mathcal{K}) \geq 0$. Hence from [2, (7.6.1), (7.6.2)] we have

$$\kappa(K_X + (n-3)\mathcal{D}) = \kappa(K_M + (n-3)\mathcal{L}) = \kappa(K_M + (n-3)L) \geq 0.$$

Thus Theorem (2.3) applies to give the result.
Assume \(n = 6 \). Then from \([1, (4.1)]\) we know that \(K_X + 3\mathcal{K} = K_X + (n - 3)\mathcal{K} \) is nef unless \((X, \mathcal{K}) \cong (\mathbb{P}^6, \mathcal{O}_{\mathbb{P}^6}(1))\). In this case \(\mathcal{K} \) is very ample, so \(|2\mathcal{K}_M| = |\sigma^*\mathcal{O}_{\mathbb{P}^6}(2)| \) defines a birational morphism. Thus the same argument as above lets us conclude that \(\kappa(K_M + 3L) \geq 0 \) and hence that \(|2\mathcal{K}_M| \) defines a birational morphism by (2.3).

Assume \(n = 5 \). Then from \([1, (4.1)]\) we know that \(K_X + 3\mathcal{K} \) is nef unless either \((X, \mathcal{K}) \cong (\mathbb{Q}, \mathcal{O}_{\mathbb{Q}}(1))\), \(\mathcal{Q} \) hyperquadric in \(\mathbb{P}^6 \), or \(L^5 = 121(\neq \frac{3^n - 1}{2}) \) and \(X \) is a singular 2-Gorenstein Fano 5-fold with \(2K_X \approx -7\mathcal{K} \).

In the first case, \(\mathcal{K} \) is very ample, so that \(|2\mathcal{K}_M| = |\sigma^*\mathcal{O}_{\mathbb{Q}}(2)| \) gives a birational morphism again by (2.3).

In the second case, note that \(X \) is not Gorenstein since otherwise \(K_X \approx -7A \) for some ample line bundle \(A \) on \(X \). This contradicts the well known fact that \(X \) has index \(\leq \dim X + 1 = 6 \) (see also \([2, (3.3.2)]\)). Thus, since \(X \) is not Gorenstein, \([2, (0.3.3)]\) applies to say that \(h^0(K_M + 2\mathcal{L}) = h^0(K_M + 2L) > 0 \).

Write \(2\mathcal{K}_M = \mathcal{K}_M + (K_M + 2L) + L \). Since \(\mathcal{K}_M \approx \varphi^*(\mathcal{K}) \), \(|L| \) gives a birational map (\(L \) is very ample off a finite set of points) and \(K_M + 2L \) is effective, we see that \(2\mathcal{K}_M \) is the sum of a nef and big and an effective line bundle. Thus we conclude that \(|2\mathcal{K}_M| \) gives a birational morphism.

Q.E.D.

The following two lemmas are not essentially used in the paper, but have some interest in themselves.

Lemma 2.5 Let \(\mathcal{M} \) be a smooth connected \(n \)-fold polarized by a very ample line bundle \(\mathcal{L} \), \(n \geq 3 \). Assume that \((\mathcal{M}, \mathcal{L})\) is of log-general type. Let \(\pi : (\mathcal{M}, \mathcal{L}) \to (M, L) \) be the first reduction of \((\mathcal{M}, \mathcal{L})\). Let \(\mathcal{K}_M := K_M + (n - 2)L \). If \(h^0(K_M + \mathcal{K}_M + tL) \neq 0 \) for \(t \leq n - 3 \), then the morphism given by \(|2\mathcal{K}_M| \) is birational.

Proof. Write \(2\mathcal{K}_M \) as \(2\mathcal{K}_M = K_M + \mathcal{K}_M + tL + (n - 2 - t)L \). Since \(K_M + \mathcal{K}_M + tL \) is effective, \(|L| \) gives a birational map and \(n - 2 - t > 0 \) we are done. Q.E.D.

Lemma 2.6 Let \(\mathcal{M} \) be a smooth connected \(n \)-fold polarized by a very ample line bundle \(\mathcal{L} \), \(n \geq 3 \). Assume that \((\mathcal{M}, \mathcal{L})\) is of log-general type. Let \(\pi : (\mathcal{M}, \mathcal{L}) \to (M, L) \) be the first reduction of \((\mathcal{M}, \mathcal{L})\). Let \(\mathcal{K}_M := K_M + (n - 2)L \). Let \(V \) be the \(t \)-fold section of \((M, L)\) obtained as transversal intersection of \(n - t \) general members of \(|L|\). Let \(\mathcal{L}_V \) be the restriction of \(L \) to \(V \) and let \(\mathcal{K}_V := K_V + (t - 2)\mathcal{L}_V \). If \(t \geq 3 \) and the map given by \(|2\mathcal{K}_M| \) is not birational, then

\[
h^0(K_V + \mathcal{K}_V + j\mathcal{L}_V) = 0 \quad \text{for} \quad 0 \leq j \leq t - 3.
\]

Proof. Consider on \(M \) the Koszul complex

\[
0 \to -(n - t)L \to \cdots \to \oplus^{n-t-1}(-2L) \to \oplus^{n-t}(-L) \to \mathcal{O}_M \to \mathcal{O}_V \to 0.
\]

By tensoring with \(\mathcal{K}_M + K_M + (n - t + j)L \) we get the exact sequence

\[
0 \to K_M + \mathcal{K}_M + jL \to \cdots \to K_M + \mathcal{K}_M + (n - t + j)L \to K_V + \mathcal{K}_V + j\mathcal{L}_V \to 0.
\]
Note that $h^1(K_M + \mathcal{K}_M + jL) = 0$ by Kodaira vanishing and $h^0(K_M + \mathcal{K}_M + (n-t+j)L) = 0$ by Lemma (2.5) since $n-t+j \leq n-3$. Thus $h^0(K_V + \mathcal{K}_V + jL_V) = 0$. Q.E.D.

As a consequence of (2.5) and (2.6) we have the following general fact.

Remark 2.7 Let \mathcal{M} be a smooth connected n-fold polarized by a very ample line bundle \mathcal{L}, $n \geq 3$. Assume that $(\mathcal{M}, \mathcal{L})$ is of log-general type. Let $\pi : (\mathcal{M}, \mathcal{L}) \rightarrow (M, L)$ be the first reduction of $(\mathcal{M}, \mathcal{L})$. Let $\mathcal{K}_M := K_M + (n-2)L$. If the morphism associated to $|2\mathcal{K}_M|$ is not birational, then $h^i(\mathcal{O}_M) = 0$, $i \geq 3$.

To see this, assume first $n = 3$. Then $h^3(\mathcal{O}_M) = h^0(K_M)$. If $h^0(K_M) > 0$, we would have an inclusion $0 \rightarrow L \rightarrow K_M + L$, so that the morphism associated to $|\mathcal{K}_M| = |K_M + L|$ would be birational.

To show the statement in the general case, assume e.g., $n = 4$. Let V be the general smooth element of $|L|$ and consider the exact sequence

$$0 \rightarrow -L \rightarrow \mathcal{O}_M \rightarrow \mathcal{O}_V \rightarrow 0.$$

Look at the cohomology associated to this sequence. Note that $h^i(-L) = 0$, $i = 0, 1, 2, 3$. Moreover $h^i(\mathcal{O}_M) = h^0(K_M) = 0$ since otherwise we would have an inclusion

$$0 \rightarrow (n-2)L = 2L \rightarrow K_M + 2L = \mathcal{K}_M,$$

and hence the same contradiction as above. Let L_V be the restriction of L to V. Set $\mathcal{K}_V := K_V + 2L_V$. By the assumption, it follows that also the morphism associated to $|2\mathcal{K}_M|$ is not birational. Therefore Lemma (2.6) yields $h^0(K_V + \mathcal{K}_V) = 0$ and thus $h^0(K_V) = h^3(\mathcal{O}_V) = 0$. Then $h^3(\mathcal{O}_M) = 0$.

In the general case the same argument as above gives the result, starting from the Koszul complex

$$0 \rightarrow -(n-3)L \cdots \rightarrow \oplus^{n-4}(-2L) \rightarrow \oplus^{n-3}(-L) \rightarrow \mathcal{O}_M \rightarrow \mathcal{O}_V \rightarrow 0.$$

3 A bound for the degree of the second adjunction mapping in the case $n = 3$

We keep the notation and the assumptions as at the beginning of §2. This section is devoted to the proof of the following result.

Theorem 3.1 Let \mathcal{M} be a smooth connected threefold polarized by a very ample line bundle \mathcal{L}. Assume that $(\mathcal{M}, \mathcal{L})$ is of log-general type. Let $\pi : (\mathcal{M}, \mathcal{L}) \rightarrow (M, L)$ be the first reduction of $(\mathcal{M}, \mathcal{L})$. Let $\mathcal{K}_M := K_M + L$. Let t be the degree of the morphism, ϕ, associated to $|2\mathcal{K}_M|$. Then $t \leq 7$.

Proof. Let d_j, $j = 0, 1, 2, 3$, $d_0 = d$, be the pluridegrees of (M, L). Let S be a smooth general member of $|L|$.
Note that we can assume $h^0(K_M + K_M) = h^0(2K_M - L) = 0$. Indeed otherwise $\Gamma(2K_M - L)$ gives an embedding $\Gamma(L) \hookrightarrow \Gamma(2K_M)$ and hence $\Gamma(2K_M)$ gives a birational morphism, given on a Zariski open set by sections of $\Gamma(L)$. Therefore a Riemann-Roch computation (see [4, §6]) gives the general relation

$$4\chi(O_S) + d_2 = d_3 + h,$$

where $h := h^0(K_M + L)$. Note also that K_M is nef and big. Then the exact sequence

$$0 \to K_M + K_M \to 2K_M \to 2K_S \to 0$$

yields $h^0(2K_M) = d_2 + \chi(O_S)$. Thus we obtain

$$(2K_M)^3 = 8d_3 = t\deg \phi(M) \geq t(d_2 + \chi(O_S) - 3).$$

Reasoning by contradiction, assume $t \geq 8$. Then (7) yields $d_3 \geq d_2 + \chi(O_S) - 3$, which, combined with (6), reads $\chi(O_S) \geq 2h - 1$. From this and Tsuji’s inequality (1.6) we infer that

$$\frac{d_1}{12} + \frac{d_3}{32} \leq 1,$$

i.e.,

$$\frac{d_1}{12} + \frac{d_3}{32} = 1.$$

(8)

Hence in particular $d_3 \geq 2$ since d_1 is integer.

Recall that $h \geq 2$ from [3, (1.2)]. Thus (6) and the above inequality $\chi(O_S) \geq 2h - 1$ give

$$\frac{d_3 - d_2}{2} = 2\chi(O_S) - 3h \geq h - 2 \geq 0,$$

so that $d_3 \geq d - 2$.

Recall that $d \geq 8$ by Lemma (1.7) and $d_3 \geq 2$ by the above. Then simply starting from $d \geq 8$, $d_1 \geq 1$, $d_2 \geq 1$ and $d_3 \geq 2$ and by using repeatedly the Hodge index inequalities (3) we obtain $d \geq 8$, $d_1 \geq 8$, $d_2 \geq 8$, $d_3 \geq 8$.

Assume $\tilde{d} := \mathcal{L}^3 = 8$. Then $|\mathcal{L}|$ embeds \mathcal{M} in \mathbb{P}^5. Indeed otherwise Castelnuovo’s bound (1) gives $g(\mathcal{L}) \leq \text{Castel}(8,4) \leq 5$ and hence we would have the numerical contradiction $16 \leq \tilde{d} + \tilde{d}_1 = d + d_1 = 2g(\mathcal{L}) - 2 \leq 8$. By looking over the list of 3-folds in \mathbb{P}^5 of degree ≤ 12 (see [5, Chapter 6]) we see that the only degree 8 log-general type case is the complete intersection of a quadric and a quartic. In this case $K_M \approx O_M(1)$ and therefore $t = 1$, contradicting the present assumption $t \geq 8$.

Thus we can assume $\tilde{d} \geq 9$, so that $d \geq 9$. Then starting from $d \geq 9$, $d_1 \geq 1$, $d_2 \geq 1$, $d_3 \geq 2$ and using repeatedly the Hodge index inequalities (3) we obtain $d \geq 9$, $d_1 \geq 9$, $d_2 \geq 9$, $d_3 \geq 9$. Now use relation (8) to get the numerical contradiction

$$1 = \frac{d_1}{12} + \frac{d_3}{32} \geq \frac{9}{12} + \frac{9}{32} > \frac{9}{12} + \frac{8}{32} = 1.$$

Thus we conclude that $t \leq 7$. Q.E.D.
References

[6] J. Harris, Curves in projective space, with the collaboration of D. Eisenbud, Université de Montreal, Montreal (Québec), Canada, (1982).

Mauro C. Beltrametti
Dipartimento di Matematica
Via Dodecaneso 35
I-16146 Genova, Italy
beltrame@dima.unige.it

Andrew J. Sommese
Department of Mathematics
University of Notre Dame
Notre Dame, Indiana, 46556, U.S.A.
sommese@nd.edu
http://www.nd.edu/~sommese