University of Notre Dame College of Engineering

PUBLICATIONS

^ Back to top

Books

  1. D. B. Go, Ionization and Ion Transport: A primer for the study of non-equilibrium, low-temperature gas discharges and plasmas, Morgan & Claypool Publishers: San Rafael, CA, 2018. (ISBN 978-1-6817-4601-2) (published as part of the Institute of Physics (IOP) Concise Physics Series)

Journal Articles

  1. 1. Z. Chao, B. P. Radka, K. Xu. G. M. Crouch, D. Han, D. B. Go, P. W. Bohn, S. K. Fullerton-Shirey, “Direct-write formation and dissolution of silver nanofilaments in ionic liquid-polymer electrolyte composites,” Small, vol. 14, art. no. 1802023, 2018.  (doi)
  2. H. Peng, M. Ghasri-Khouzani, S. Gong, R. Attardo, P. Ostiguy, B. A. Gatrell, J. Budzinski, C. Tomonto, J. Neidig, M. Ravi Shankar, R. Billo, D. B. Go, D. Hoelzle, “Fast prediction of thermal distortion in metal powder bed fusion additive manufacturing: Part 2, a quasi-static thermo-mechanical model,” Additive Manufacturing , vol. 22, pp. 869-882, 2018.  (doi)
  3. H. Peng, M. Ghasri-Khouzani, S. Gong, R. Attardo, P. Ostiguy, B. A. Gatrell, J. Budzinski, C. Tomonto, J. Neidig, M. Ravi Shankar, R. Billo, D. B. Go, D. Hoelzle, “Fast prediction of thermal distortion in metal powder bed fusion additive manufacturing: Part 1, a thermal circuit network model,” Additive Manufacturing, vol. 22, pp. 852-868, 2018.  (doi)
  4. P. Mehta, P. Barboun, F. A. Herrera, J. Kim, P. Rumbach, D. B. Go, J. C. Hicks, W. F. Schneider, “Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis,” Nature Catalysis, vol. 1, pp. 269–275, 2018.  (doi)
  5. S. Marczak, K. Richards, Z. Ramshani, E. Smith, S. Senapati, R. Hill, D. B. Go, H.-C. Chang, “Simultaneous isolation and preconcentration of exosomes by ion concentration polarization,” Electrophoresis, vol. 39, pp. 2029-2038, 2018.  (doi)
  6. X. Tan, D. B. Go, “Understanding the scaling of electron kinetics in the transition from collisional to collisionless conditions in microscale gas discharges,” Journal of Applied Physics, vol. 123, art. no. 063303, 2018.  (doi)
  7. H. E. Delgado, P. Rumbach, D. M. Bartels, D. B. Go, “Total internal reflection absorption spectroscopy (TIRAS) for the detection of solvated electrons at a plasma-liquid interface,” Journal of Visualized Experiments, vol. 131, art. no. e56833, 2018.  (doi)
  8. D. B. Go, J. R. Haase, J. George, J. Mannert, A. Nojeh, R. Nemenich, “Thermionic energy conversion in the 21st century: Advances and opportunities for space and terrestrial applications,” Frontiers in Mechanical Engineering, vol. 3, art. no. 13, 2017.  (doi)
  9. S. Ghosh, R. Hawtof, P. Rumbach, D. B. Go, R. Akolkar, R. M. Sankaran, “Quantitative study of electrochemical reduction of Ag+ to Ag nanoparticles in aqueous solutions by a plasma cathode,” Journal of the Electrochemical Society, vol. 64, pp. D818-D824, 2017.  (doi)
  10. M. J. Johnson, D. B. Go, “Recent advances in electrohydrodynamic pumps operated by ionic winds: A review,” Plasma Sources Science and Technology, vol. 26, art. no 103002, 2017. (doi)
  11. K. Yoshida, M. J. Johnson*, D. B. Go, “Thin air jet synthesized with ring-shaped DBD and sliding discharge: Measurement of flow velocities, flow rates, and stream diameters,” Journal of Electrostatics, vol. 87, pp. 293-301, 2017. (doi)
  12. D. B. Go, M. Z. Atashbar, H.-C. Chang, “Surface acoustic wave devices for chemical sensing and analysis: A review,” Analytical Methods, vol. 9, pp. 4112-4134. (invited review) (doi)
  13. P. Rumbach, D.B. Go, “Perspectives on plasmas in contact with liquids and its relationship to electrocatalysis for chemical processing and materials synthesis,” Topics in Catalysis, vol. 60, pp. 799-811, 2017. (invited) (doi)
  14. P. Rumbach, J.-P. Clarke, D. B. Go, “Electrostatic Debye layer formed at a plasma-liquid interface,” Physical Review E, vol. 95, art. no. 053203, 2017. (doi)
  15. G. M. Crouch, D. Han, S. K. Fullerton-Shirey, D. B. Go, P. W. Bohn, “Addressable direct-write nanoscale filament formation and dissolution by nanoparticle-mediated bipolar electrochemistry,” ACS Nano , vol. 11, pp. 4976-4984, 2017. (doi)
  16. J. Kim, D. B. Go, J. C. Hicks, “Synergistic effects of plasma-catalyst interactions for CH4 activation,” Physical Chemistry Chemical Physics, vol. 19, pp. 13010-13021, 2017. (doi)
  17. F. Herrera, T. Luo, D. B. Go, “Thermal rectification under transient conditions: The role of thermal capacitance and thermal conductivity,” Journal of Heat Transfer, vol. 139, art. no. 091301, 2017. (doi)
  18. R. J. Flaherty, S. A. Sarver, L. Sun, G. Brownell, D. B. Go, N. J. Dovichi, “A high voltage power supply that mitigates current reversals in capillary zone electrophoresis-electrospray mass spectrometry,” Journal of American Society of Mass Spectrometry vol. 28, pp. 247-252, 2017. (doi)
  19. X. Tan, P. Rumbach, N. Griggs, K. L. Jensen, D. B. Go, “Theoretical analysis of 1D resonant tunneling behavior in ion-enhanced cold field and thermo-field emission,” Journal of Applied Physics, vol. 120, art. no. 213301, 2016. (doi)
  20. M. J. Johnson, D. B. Go, “Impngement cooling using the ionic wind generated by a low-voltage piezoelectric transformer,” Frontiers in Mechanical Engineering, vol. 2, art. no. 7, 2016. (doi)
  21. P. Rumbach, R. Xu, D. B. Go, “Electrochemical production of oxalate and formate from CO2 by solvated electrons produced using an atmospheric-pressure plasma,” Journal of the Electrochemical Society, vol. 163, pp. F1157-F1161, 2016. (doi)
  22. Z. Ramshani, M. J. Johnson, M. Atashbar, D. B. Go, “A broad area electrospray actuated by a piezoelectric transformer,” Applied Physics Letters , vol. 109, art. no. 044103, 2016. (doi)
  23. X. Mu, Z. Song, Y. Wang, Z. Xu, D. B. Go, T. Luo, “Thermal transport in oxidized polycrystalline graphene,” Carbon, vol. 108, pp. 318-326, 2016. (doi)
  24. M. A. Bilici, J. R. Haase, C. Boyle, D. B. Go, R. M. Sankaran, “Experimental evidence for the transition from a field emission-driven Townsend discharge to a self-sustained microplasma,” Journal of Applied Physics, vol. 119, art. no. 223301, 2016. (doi)
  25. J. Kim, M. S. Abbott, D. B. Go, J. C. Hicks, “Enhancing C-H bond activation of methane via temperature-controlled, catalyst-plasma interactions,” ACS Energy Letters, vol. 1, pp. 94-99, 2016. (doi)
  26. T. Jiang, X. Zhang, S. Vishwanath, X. Mu*, V. Kanzyuba, D. Sokolov, S. Ptasinka, D. B. Go, H. Xing, T. Luo, “Covalent bonding modulated graphene–metal interfacial thermal transport,” Nanoscale, vol. 8, pp. 10993-11001, 2016. (doi)
  27. J. R. Haase, D. B. Go, “Analysis of thermionic and thermo-field emission in microscale gas discharges,” Journal of Physics D: Applied Physics, vol. 49, art. no. 055206, 2016. (doi)
  28. M. J. Johnson, D. B. Go, “Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air,” Journal of Applied Physics, vol. 118, art. no. 2343304, 2015. (doi)
  29. P. Rumbach, D. M. Bartels, R. M. Sankaran, D. B. Go, “The effect of air on solvated electron chemistry at a plasma/liquid interface,”Journal of Physics D: Applied Physics, vol. 48, art. no 424001, 2015 (invited). (doi)
  30. P. Rumbach, D. M. Bartels, R. M. Sankaran, D. B. Go, “The solvation of electrons by an atmospheric pressure plasma,” Nature Communications, vol. 6, art. no. 7248, 2015. (doi)
  31. D. Taller, K. Richards, Z. Slouka, S. Senapati, R. Hill, D. B. Go, H.-C. Chang, “On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis,” Lab on a Chip, vol. 15, pp. 1656-1666, 2015 (cover article). (doi)
    ../images/research/LCCover.jpg
  32. M. J. Johnson, R. Tirumala, D. B. Go, “Analysis of geometric scaling of miniature multi-electrode assisted corona discharges for ionic wind generation,” Journal of Electrostatics, vol. 74, pp. 8-14, 2015. (doi)
  33. M. J. Johnson, D. B. Go, “Ferroelectric crystals for the low-voltage operation of surface dielectric barrier discharges,” Applied Physics Letters, vol. 105, art. no. 264102, 2014. (doi)
  34. X. Mu, T. Zhang, D. B. Go, T. Luo, “Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices,” Carbon, vol. 83, pp. 208-216, 2014. (doi)
  35. D. B. Go, A. Venkattraman, “Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve,” Journal of Physics D: Applied Physics, vol. 47, art. no 503001, 2014. (Invited Review Article) (doi)
  36. P. Rumbach, N. Griggs, R. M. Sankaran, D. B. Go, "Visualization of electrolytic reactions at a plasma-liquid interface," IEEE Transactions on Plasma Science, vol. 42, pp. 2610-2611, 2014. (doi)
  37. P. Rumbach, Y. Li, S. Martinez, T. J. Twahirwa, D. B. Go, “Experimental study of electron impact ionization in field emission-driven microdischarges” Plasma Sources Science and Technology, vol. 23, art. no. 065026, 2014 (doi).
  38. Y. Li, D. B. Go, “The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown” Journal of Applied Physics, vol. 116, art. no. 103306, 2014 (doi).
  39. M. J. Johnson, J. Linczer, D. B. Go, “Thermally induced atmospheric pressure gas discharges using pyroelectric crystals,” Plasma Sources Science and Technology, vol. 23, art. no. 065018, 2014. (doi)
  40. S.A. Sarver, N. Chetwani, N. J. Dovichi, D. B. Go, C. Gartner, "A comparison of AC and DC electrospray ionization for mass spectrometry," Journal of the American Society of Mass Spectrometry, vol. 25, pp. 524-529, 2014. (doi)
  41. X. Mu, X. Wu, T. Zhang, D. B. Go, T. Luo, “Thermal transport in graphene oxide – From ballistic extreme to amorphous limit,” Scientific Reports, vol. 4, art. no. 3909, 2014. (doi)
  42. R. Tirumala, D. B. Go, "Comparative study of corona discharge simulation techniques for electrode configurations inducing non-uniform electric fields," Journal of Electrostatics, vol. 72, pp. 99-106, 2014. (doi)
  43. Y. Li, D. B. Go, “Using field emission to control the electron energy distribution in high-pressure microdischarges at microscale dimensions,” Applied Physics Letters, vol. 103, art. no. 234104, 2013. (doi)
  44. J. Z. Woodruff, A. P. C. Buccellato, P. Brenner, D. B. Go, “Environmentally Opportunistic Computing: A distributed waste heat reutilization approach to energy-efficient buildings and data centers,” Energy and Buildings, vol. 69, pp. 41-50, 2013. (doi).
  45. P. Rumbach, M. Witzke, R. M. Sankaran, D. B. Go “Decoupling interfacial reactions between plasmas and liquids: Charge transfer vs. plasma neutral reactions,” Journal of the American Chemical Society, vol. 135, pp. 16264-16267, 2013. (doi).
  46. D. Taller, D. B. Go, H.-C. Chang, “Modulated exponential films generated by surface acoustic waves and their role in liquid wicking and aerosolization at a pinned drop,” Physical Review E, vol. 87, art. no. 053004, 2013. (doi)
  47. Y. Li, R. Tirumala, P. Rumbach, D. B. Go, “The coupling of ion-enhanced field emission and the discharge during microscale breakdown at moderately high pressures,” IEEE Transactions on Plasma Science, vol. 41, pp. 24-35, 2013. (doi)
  48. D. B. Go, “Theoretical analysis of ion-enhanced thermionic emission for low-temperature, non-equilibrium gas discharges,” Journal of Physics D: Applied Physics, vol. 46, art. no. 035202, 2013. (doi)
  49. D. Taller, D. B. Go, H.-C. Chang, “Self-similar micro and nanodrops generated by acoustic and Maxwell pressures of scattered and transmitted surface acoustic waves,” Physical Review Letters, vol. 109, art. no. 224301, 2012. (doi)
  50. P. Rumbach, D. B. Go, “Fundamental properties of field emission-driven DC microdischarges,” Journal of Applied Physics, vol. 112, art. no. 103302, 2012. (doi)
  51. M. Witzke, P. Rumbach, D. B. Go, R. M. Sankaran, “Evidence for the electrolysis of water by plasmas formed at the surface of aqueous solutions,” Journal of Physics D: Applied Physics, vol. 45, art. no. 442001, 2012. (doi)
  52. Y. Wang, M. K. Tan, D. B. Go, H.-C. Chang, "Electrospray cone-jet breakup and droplet production for electrolyte solutions," Europhysics Letters, vol. 99, art. no. 64003, 2012. (doi)
  53. R. Tirumala, D. B. Go, "The multi-electrode assisted corona discharge for electrohydrodynamic flow generation in narrow channels" IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, pp. 1854-1863, 2011. (doi)
  54. J. Ho, M. K. Tan, D. B. Go, L. Y. Yeo, J. R. Friend, H.-C. Chang, "A paper-based microfluidic surface acoustic wave sample delivery and ionization source for rapid and sensitive ambient mass spectrometry," Analytical Chemistry, vol. 83, pp. 3260-3266, 2011. Accelerated Article (doi)
  55. N. Chetwani, C. A. Cassou, D. B. Go, H.-C. Chang, “Frequency dependence of AC electrospray ionization mass spectrometry,” Analytical Chemistry, vol. 83, pp. 3017-3023, 2011. (doi)
  56. R. Tirumala, Y. Li, D. A. Pohlman, D. B. Go, "Corona discharges in sub-millimeter electrode gaps," Journal of Electrostatics, vol. 69, pp. 36-42, 2011. (doi)
  57. R. Tirumala, D. B. Go, "An analytical formulation for the modified Paschen's curve," Applied Physics Letters, vol. 97, art. no. 151502, 2010. (doi)
  58. N. Chetwani, C. A. Cassou, D. B. Go, H.-C. Chang, "High-frequency AC electrospray ionization source for mass spectrometry of biomolecules," Journal of the American Society of Mass Spectrometry, vol. 21, pp. 1852-1856, 2010. (doi)
  59. D. B. Go, M. Sen, "On the condition for thermal rectification using bulk materials," Journal of Heat Transfer, vol. 132, art. no. 124502, 2010. (doi)
  60. D. B. Go, D. A. Pohlman "A mathematical model of the modified Paschen's curve for breakdown in microscale gaps," Journal of Applied Physics, vol. 107, art. no. 103303, 2010. (doi)
  61. A. Guajardo-Cuéllar, D. B. Go, M. Sen, "Evaluation of heat current formulations for equilibrium molecular dynamics calculations of thermal conductivity," Journal of Chemical Physics, vol. 132, art. no. 104111, 2010. (doi)
  62. D. B. Go, T. S. Fisher, S. V. Garimella, V. B. Bahadur "Planar microscale ion generation devices in atmospheric air with diamond-based electrodes," Plasma Sources Science and Technology, vol. 18, art. no. 035004, 2009. (free access online)
  63. D. B. Go, T. S. Fisher, S. V. Garimella "Direct simulation of ionization and ion transport for planar microscale ion generation devices," Journal of Physics D: Applied Physics, vol. 42, art. no. 055203, 2009. (free access online)
  64. D. B. Go, R. A. Maturana, T. S. Fisher, S. V. Garimella "Enhancement of external forced convection by ionic wind," International Journal of Heat and Mass Transfer, vol. 51, pp. 6047-6053, 2008. (free access online)
  65. D. B. Go, S. V. Garimella, T. S. Fisher, R. K. Mongia "Ionic winds for locally enhanced cooling," Journal of Applied Physics, vol. 102, art. no. 053302, 2007. (free access online)
    - also in Virtual Journal of Nanoscale Science and Technology, vol. 16, no. 14, 2007.

^ Back to top

Book Chapters and Magazine Articles

  1. K. E. Richards, D. B. Go, R. Hill, “Surface Acoustic Wave Lysis and Ion-Exchange Membrane Quantification of Exosomal MicroRNA,” in MicroRNA Detection and Target Identification: Methods and Protocols (ed. T. Dalmay), Methods in Molecular Biology (vol. 1580), pp. 59-70, Springer:New York, 2017. (ISBN 978-1-4939-6866-4)
  2. P. Brenner, D. Thain, A. P. C. Buccellato, D. B. Go, "Environmentally Opportunistic Computing," in Handbook of Energy-Aware and Green Computing, Vol. 2 (ed. I. Ahmad, S. Ranka), CRC Press:New York, NY, pp. 949-963, 2012. (ISBN 978-1-1381-9871-5)
  3. R. Tirumala, D. B. Go, "Ionic Winds: A New Frontier for Air Cooling," in Electronics Cooling magazine, pp. 8-11, March 2012. (online)

^ Back to top

Patents

  1. N. Chetwani, C. A. Cassou, D. B. Go, H.-C. Chang, Methods and Apparatus for Mass Spectrometry Utilizing an AC Electrospray Device,” U.S. Patent 8,716,675, filed 04/27/2011 (application 13/095,288), issued 05/06/2014.
  2. M. MacDonald, R. K. Mongia, D. B. Go “Flow Tube Apparatus,” U.S. Patent 8,274,228, filed 12/24/2009 (application 12/647,331), issued 09/25/2012.
  3. T. S. Fisher, S. V. Garimella, D. B. Go, R. K. Mongia, "Various Methods, Apparatuses, and Systems that Use Ionic Wind to Affect Heat Transfer," U.S. Patent 7,545,640, filed 02/16/2007 (application 11/676,194), issued 06/09/2009.

^ Back to top

Invited Conference and Workshop Presentations

  1. D. B. Go, “Field Emission and its Effect on Microdischarge Formation,” Gaseous Electronics Conference, Pittsburgh, PA, 2017.
  2. D. B. Go, “The Role of Field Emission on Plasma Formation at Microscale Dimensions,” International Vacuum Nanoelectronics Conference, Regensberg, Germany, 2017.
  3. D. B. Go “The Plasma-Catalyst Interaction: Exploring Synergistic Effects at High Temperature,” International Symposium on Plasma Nanoscience, Antwerp, Belgium, 2017.
  4. D. B. Go, “Electrolysis with Plasma Cathodes: Modeling and Experiments to Understand the Electrochemical Interface”, ECS Meeting, New Orleans, LA, 2017.
  5. D. B. Go, “Plasma Electrochemistry: Experiments and Modelling of the Plasma/Liquid Interface,” International Conference on Plasmas with Liquids, Prague, Czech Republic, 2017.
  6. D. B. Go, “On the Role of Field Emission in Atmospheric-Pressure Microscale Plasmas,” International Vacuum Nanoelectronics Conference, Vancouver, Canada, 2016.
  7. D. B. Go, “Solvated Electron Chemistry at the Plasma-Liquid Interface: Detection and Application to Chemical Processing”, International Symposium on Plasmas for Catalysis and Energy Materials, Tianjin, China, 2016.
  8. P. Rumbach, R. Xu, D. B. Go, “Electrochemical Reduction of CO2(aq) By Solvated Electrons at a Plasma-Liquid Interface,” ECS Meeting, San Diego, CA, 2016.
  9. D. B. Go, “Plasmas with Liquid Electrodes: Fundamental Processes and Applications to Chemical Processing”, International Conference on Plasma-Nano Technology and Science, Nagoya, Japan, 2016.
  10. D. B. Go, “Understanding Charge Transfer Reactions at the Interface of Plasmas in Contact with Liquids,” International Conference on Reactive Plasmas/Gaseous Electronics Conference, Honolulu, HI, 2015.
  11. D. B. Go, “A Microfluidic Approach to Exosomal RNA Analysis Using Surface Acoustic Wave Lysing and Ion-Exchange Membrane Sensing,” Advances in Microfluidics and Nanofluidics, Beijing, China, 2015.
  12. D. B. Go, “Atmospheric-Pressure Plasmas: A Radiation-Free Approach to Solvated Electrons,” International Workshop on Microplasmas, Newark, NJ, 2015.
  13. D. B. Go, “Atmospheric-pressure Ionization Processes: New Approaches and Applications”, International Conference on Electrostatics, Southampton, England, 2015.
  14. D. B. Go, P. Rumbach, D. M. Bartels, R. M. Sankaran, “Detection of Solvated Electrons at a Plasma-Liquid Interface,” Gaseous Electronics Conference, Raleigh, NC, 2014. 
  15. D. B. Go, “Electron-Initiated Reactions at the Interface of Plasmas and Liquids,” International Symposium on Plasma Nanoscience, Málaga, Spain, 2014.
  16. D. B. Go “Generating Dielectric Barrier-like Discharges using Polar, Non-Centrosymmetric Crystals,” Gordon Research Conference on Plasma Processing Science, Smithfield, RI, 2014.
  17. Y. Li, P. Rumbach, D. B. Go, “Field Emission in Microscale Dimensions: A New Approach to Atmospheric Pressure Gas Discharges,” AVS International Symposium and Exhibition, Long Beach, CA, 2013.
  18. D. B. Go, “Using Surface Processes to Control Electron Energies in Discharges,” International Symposium on Plasma Nanoscience, Asilomar, CA, 2013.
  19. D. B. Go, “Microplasmas: A New Tool for Nanomaterial Synthesis and New Application for Nanomaterials,” CMOS Emerging Technologies Research Symposium, Whistler, BC Canada, 2013.
  20. D. B. Go, “Controlling Microdischarge Electron Energy Distributions with Surface Emission Processes,” Workshop on Optical Properties of Plasma, University of Notre Dame, IN, 2013. 
  21. D. B. Go, “Paper-SAW Mass Spectrometry: The Fundamentals of Surface Acoustic Wave Nebulization using Paper Sample Delivery for Ambient Mass Spectrometry" SCIX Conference (The Federation of Analytical Chemistry and Spectroscopy Societies), Kansas City, OH, 2012.
  22. D. B. Go, “Direct Current and Alternating Current Electrosprays: The Application of Electrostatics to Chemical Analysis,” Annual Meeting of the Electrostatics Society of America, Cambridge, Canada, 2012.
  23. D. B. Go, “Breakdown in Microscale Electrode Gaps: The Role of Ion-Enhanced Field Emission in the Modified Paschen’s Curve,” International Workshop on the Physics of Complex Plasmas, Potsdam, Germany, 2011.
  24. D. B. Go, “Low-Temperature Plasma research in the Go Group Research Lab”, United States Microplasma Research Community Meeting, Jersey City, NJ, 2011.

^ Back to top