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1 Pointset Topology

1.1 Metric spaces

We recall that a map f : Rm → Rn between Euclidean spaces is continuous if and only if

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀y ∈ X d(x, y) < δ ⇒ d(f(x), f(y)) < ε, (1.1)

where
d(x, y) = ||x− y|| =

√
(x1 − y1)2 + · · ·+ (xn − yn)2 ∈ R≥0

is the Euclidean distance between two points x, y in Rn.

Example 1.2. (Examples of continuous maps.)

1. The addition map a : R2 → R, x = (x1, x2) 7→ x1 + x2;

2. The multiplication map m : R2 → R, x = (x1, x2) 7→ x1x2;

The proofs that these maps are continuous are simple estimates that you probably remember
from calculus. Since the continuity of all the maps we’ll look at in these notes is proved by
expressing them in terms of the maps a and m, we include the proofs of continuity of a and
m for completeness.
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Proof. To prove that the addition map a is continuous, suppose x = (x1, x2) ∈ R2 and ε > 0
are given. We claim that for δ := ε/2 and y = (y1, y2) ∈ R2 with d(x, y) < δ we have
d(a(x), a(y)) < ε and hence a is a continuous function. To prove the claim, we note that

d(x, y) =
√
|x1 − y1|2 + |x2 − y2|2

and hence |x1 − y1| ≤ d(x, y), |x1 − y1| ≤ d(x, y). It follows that

d(a(x), a(y)) = |a(x)− a(y)| = |x1 + x2− y1− y2| ≤ |x1− y1|+ |x2− y2| ≤ 2d(x, y) < 2δ = ε.

To prove that the multiplication map m is continuous, we claim that for

δ := min{1, ε/(|x1|+ |x2|+ 1)}

and y = (y1, y2) ∈ R2 with d(x, y) < δ we have d(m(x),m(y)) < ε and hence m is a
continuous function. The claim follows from the following estimates:

d(m(y),m(x)) = |y1y2 − x1x2| = |y1y2 − x1y2 + x1y2 − x1x2|
≤ |y1y2 − x1y2|+ |x1y2 − x1x2| = |y1 − x1||y2|+ |x1||y2 − x2|
≤ d(x, y)(|y2|+ |x1|) ≤ d(x, y)(|x2|+ |y2 − x2|+ |x1|)
≤ d(x, y)(|x1|+ |x2|+ 1) < δ(|x1|+ |x2|+ 1) ≤ ε

Lemma 1.3. The function d : Rn × Rn → R≥0 has the following properties:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) (symmetry);

3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Definition 1.4. A metric space is a set X equipped with a map

d : X ×X → R≥0

with properties (1)-(3) above. A map f : X → Y between metric spaces X, Y is

continuous if condition (1.1) is satisfied.

an isometry if d(f(x), f(y)) = d(x, y) for all x, y ∈ X;

Two metric spaces X, Y are homeomorphic (resp. isometric) if there are continuous maps
(resp. isometries) f : X → Y and g : Y → X which are inverses of each other.

Example 1.5. An important class of examples of metric spaces are subsets of Rn. Here are
particular examples we will be talking about during the semester:
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1. The n-disk Dn := {x ∈ Rn | |x| ≤ 1} ⊂ Rn, and Dn
r := {x ∈ Rn | |x| ≤ r}, the n-disk

of radius r > 0.

The dilation map
Dn −→ Dn

r x 7→ rx

is a homeomorphism between Dn and Dn
r with inverse given by multiplication by 1/r.

However, these two metric spaces are not isometric for r 6= 1. To see this, define the
diameter diam(X) of a metric space X by

diam(X) := sup{d(x, y) | x, y ∈ X} ∈ R≥0 ∪ {∞}.

For example, diam(Dn
r ) = 2r. It is easy to see that if two metric spaces X, Y are

isometric, then their diameters agree. In particular, the disks Dn
r and Dn

r′ are not
isometric unless r = r′.

2. The n-sphere Sn := {x ∈ Rn+1 | |x| = 1} ⊂ Rn+1.

3. The torus T = {v ∈ R3 | d(v, C) = r} for 0 < r < 1. Here

C = {(x, y, 0) | x2 + y2 = 1} ⊂ R3

is the unit circle in the xy-plane, and d(v, C) = infw∈C d(v, w) is the distance between
v and C.

4. The general linear group

GLn(R) = {vector space isomorphisms f : Rn → Rn}
←→ {(v1, . . . , vn) | vi ∈ Rn, det(v1, . . . , vn) 6= 0}
= {invertible n× n-matrices} ⊂ Rn × · · · × Rn︸ ︷︷ ︸

n

= Rn2

Here we think of (v1, . . . , vn) as an n × n-matrix with column vectors vi, and the
bijection is the usual one in linear algebra that sends a linear map f : Rn → Rn to the
matrix (f(e1), . . . , f(en)) whose column vectors are the images of the standard basis
elements ei ∈ Rn.

5. The special linear group

SLn(R) = {(v1, . . . , vn) | vi ∈ Rn, det(v1, . . . , vn) = 1} ⊂ Rn2

6. The orthogonal group

O(n) = {linear isometries f : Rn → Rn}
= {(v1, . . . , vn) | vi ∈ Rn, vi’s are orthonormal} ⊂ Rn2

We recall that a collection of vectors vi ∈ Rn is orthonormal if |vi| = 1 for all i, and vi
is perpendicular to vj for i 6= j.
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7. The special orthogonal group

SO(n) = {(v1, . . . , vn) ∈ O(n) | det(v1, . . . , vn) = 1} ⊂ Rn2

8. The Stiefel manifold

Vk(Rn) = {linear isometries f : Rk → Rn}
= {(v1, . . . , vk) | vi ∈ Rn, vi’s are orthonormal} ⊂ Rkn

Example 1.6. The following maps between metric spaces are continuous. While it is pos-
sible to prove their continuity using the definition of continuity, it will be much simpler to
prove their continuity by ‘building’ these maps using compositions and products from the
continuous maps a and m of Example 1.2. We will do this below in Lemma 1.22.

1. Every polynomial function f : Rn → R is continuous. We recall that a polynomial
function is of the form f(x1, . . . , xn) =

∑
i1,...,in

ai1,...,inx
i1
1 · · · · · xinn for ai1,...,in ∈ R.

2. Let Mn×n(R) = Rn2
be the set of n× n matrices. Then the map

Mn×n(R)×Mn×n(R) −→Mn×n(R) (A,B) 7→ AB

given by matrix multiplication is continuous. Here we use the fact that a map to the
product Mn×n(R) = Rn2

= R × · · · × R is continuous if and only if each component
map is continuous (see Lemma 1.21), and each matrix entry of AB is a polynomial
and hence a continuous function of the matrix entries of A and B. Restricting to the
invertible matrices GLn(R) ⊂Mn×n(R), we see that the multiplication map

GLn(R)×GLn(R) −→ GLn(R)

is continuous. The same holds for the subgroups SO(n) ⊂ O(n) ⊂ GLn(R).

3. The map GLn(R) → GLn(R), A 7→ A−1 is continuous (this is a homework problem).
The same statement follows for the subgroups of GLn(R).

The Euclidean metric on Rn given by d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2 for x, y ∈
Rn is not the only reasonable metric on Rn. Another metric on Rn is given by

d1(x, y) =
n∑
i=1

|xi − yi|. (1.7)

The question arises whether it can happen that a map f : Rn → Rn is continuous with
respect to one of these metrics, but not with respect to the other. To see that this doen’t
happen, it is useful to characterize continuity of a map f : X → Y between metric spaces
X, Y in a way that involves the metrics on X and Y less directly than Definition 1.4 does.
This alternative characterization will be based on the following notion of “open subsets” of
a metric space.
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Definition 1.8. Let X be a metric space. A subset U ⊂ X is open if for every point x ∈ U
there is some ε > 0 such that Bε(x) ⊂ U . Here Bε(x) = {y ∈ X | d(y, x) < ε} is the ball of
radius ε around x.

To illustrate this, lets look at examples of subsets of Rn equipped with the Euclidean
metric. The subset Dn

r = {v ∈ Rn | ||v|| ≤ r} ⊂ Rn is not open, since for for a point v ∈ Dn
r

with ||v|| = r any open ball Bε(v) with center v will contain points not in Dn
r . By contrast,

the subset Br(0) ⊂ Rn is open, since for any x ∈ Br(0) the ball Bδ(x) of radius δ = r− ||x||
is contained in Br(0), since for y ∈ Bδ(x) by the triangle inequality we have

d(y, 0) ≤ d(y, x) + d(x, 0) < δ + ||x|| = (r − ||x||) + ||x|| = r.

Lemma 1.9. A map f : X → Y between metric spaces is continuous if and only if f−1(V )
is an open subset of X for every open subset V ⊂ Y .

Corollary 1.10. If f : X → Y and g : Y → Z are continuous maps, then so it their compo-
sition g ◦ f : X → Z.

Exercise 1.11. (a) Prove Lemma 1.9

(b) Assume that d, d′ are two metrics on a set X which are equivalent in the sense that
there are constants C,C ′ > 0 such that d(x, y) ≤ Cd1(x, y) and d1(x, y) ≤ C ′d(x, y) for
all x, y ∈ X. Show that a subset U ⊂ X is open with respect to d if and only if it is
open with respect to d′.

(c) Show that the Euclidean metric d and the metric (1.7) on Rn are equivalent. This shows
in particular that a map f : Rn → Rn is continuous w.r.t. d if and only if it is continuous
w.r.t. d1.

1.2 Topological spaces

Lemma 1.9 and Exercise (b) above shows that it is better to define continuity of maps
between metric spaces in terms of the open subsets of these metric space instead of the
original ε-δ-definition. In fact, we can go one step further, forget about the metric on a set
X altogether, and just consider a collection T of subsets of X that we declare to be “open”.
The next result summarizes the basic properties of open subsets of a metric space X, which
then motivates the restrictions that we wish to put on such collections T.

Lemma 1.12. Open subsets of a metric space X have the following properties.

(i) X and ∅ are open.

(ii) Any union of open sets is open.

(iii) The intersection of any finite number of open sets is open.

Definition 1.13. A topological space is a set X together with a collection T of subsets of
X, called open sets which are required to satisfy conditions (i), (ii) and (iii) of the lemma
above. The collection T is called a topology on X. The sets in T are called the open sets,
and their complements in X are called closed sets. A subset of X may be neither closed nor
open, either closed or open, or both.

A map f : X → Y between topological spaces X, Y is continuous if the inverse image
f−1(V ) of every open subset V ⊂ Y is an open subset of X.
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It is easy to see that the composition of continuous maps is again continuous.

Examples of topological spaces.

1. Let X be a metric space, and T the collection of those subsets of X that are unions of
balls Bε(x) in X (i.e., the subsets which are open in the sense of Definition 1.8). Then
T is a topology on X, the metric topology.

2. Let X be a set. Then T = {all subsets of X} is a topology, the discrete topology. We
note that any map f : X → Y to a topological space Y is continuous. We will see later
that the only continuous maps Rn → X are the constant maps.

3. Let X be a set. Then T = {∅, X} is a topology, the indiscrete topology.

Sometimes it is convenient to define a topology U on a set X by first describing a smaller
collection B of subsets of X, and then defining U to be those subsets of X that can be
written as unions of subsets belonging to B. We’ve done this already when defining the
metric topology: Let X be a metric space and let B be the collection of subsets of X of the
form Bε(x) := {y ∈ X | d(y, x) < ε} (the balls in X). Then the metric topology U on X
consists of those subsets U which are unions of subsets belonging to B.

Lemma 1.14. Let B be a collection of subsets of a set X satisfying the following conditions

1. Every point x ∈ X belongs to some subset B ∈ B.

2. If B1, B2 ∈ B, then for every x ∈ B1 ∩ B2 there is some B ∈ B with x ∈ B and
B ⊂ B1 ∩B2.

Then T := {unions of subsets belonging to B} is a topology on X.

Definition 1.15. If the above conditions are satisfied, we call the collection B is called a
basis for the topology T or we say that B generates the topology T.

It is easy to check that the collection of balls in a metric space satisfies the above condi-
tions and hence the collection of open subsets is a topology as claimed by Lemma 1.12.

1.3 Constructions with topological spaces

1.3.1 Subspace topology

Definition 1.16. Let X be a topological space, and A ⊂ X a subset. Then

T = {A ∩ U | U ⊂
open

X}

is a topology on A called the subspace topology.

Lemma 1.17. Let X be a metric space and A ⊂ X. Then the metric topology on A agrees
with the subspace topology on A (as a subset of X equipped with the metric topology).

Lemma 1.18. Let X, Y be topological spaces and let A be a subset of X equipped with the
subspace topology. Then the inclusion map i : A → X is continuous and a map f : Y → A
is continuous if and only if the composition i ◦ f : Y → X is continuous.
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1.3.2 Product topology

Definition 1.19. The product topology on the Cartesian product X × Y = {(x, y) | x ∈
X, y ∈ Y } of topological spaces X, Y is the topology with basis

B = {U × V | U ⊂
open

X, V ⊂
open

Y }

The collection B obviously satisfies property (1) of a basis; property (2) holds since (U ×
V )∩ (U ′ × V ′) = (U ∩U ′)× (V ∩ V ′). We note that the collection B is not a topology since
the union of U ×V and U ′×V ′ is typically not a Cartesian product (e.g., draw a picture for
the case where X = Y = R and U,U ′, V, V ′ are open intervals).

Lemma 1.20. The product topology on Rm×Rn (with each factor equipped with the metric
topology) agrees with the metric topology on Rm+n = Rm × Rn.

Proof: homework.

Lemma 1.21. Let X, Y1, Y2 be topological spaces. Then the projection maps pi : Y1×Y2 → Yi
is continuous and a map f : X → Y1 × Y2 is continuous if and only if the component maps

X
f // Y1 × Y2

pi // Yi

are continuous for i = 1, 2.

Proof: homework

Lemma 1.22. 1. Let X be a topological space and let f, g : X → R be continuous maps.
Then f + g and f · g continuous maps from X to R. If g(x) 6= 0 for all x ∈ X, then
also f/g is continuous.

2. Any polynomial function f : Rn → R is continuous.

3. The multiplication map µ : GLn(R)×GLn(R)→ GLn(R) is continuous.

Proof. To prove part (1) we note that the map f + g : X → R can be factored in the form

X
f×g−→ R× R a−→ R

The map f × g is continuous by Lemma 1.21 since its component maps f, g are continuous;
the map a is continuous by Example 1.2, and hence the composition f + g is continuous.
The argument for f · g is the same, with a replaced by m. To prove that f/g is continuous,
we factor it in the form

X
f×g //R× R× p1×(I◦p2) //R× R× m //R,

where R× = {t ∈ R | t 6= 0}, p1 (resp. p2) is the projection to the first (resp. second) factor
of R × R×, and I : R× → R× is the inversion map t 7→ t−1. By Lemma 1.21 the pi’s are
continuous, in calculus we learned that I is continuous, and hence again by Lemma 1.21 the
map p1 × (I ◦ p2) is continuous.
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To prove part (2), we note that the constant map Rn → R, x = (x1, . . . , xn) 7→ a is
obviously continuous, and that the projection map pi : Rn → R, x = (x1, . . . , xn) 7→ xi
is continuous by Lemma 1.21. Hence by part (1) of this lemma, the monomial function
x 7→ axi11 · · ·xinn is continuous. Any polynomial function is a sum of monomial functions and
hence continuous.

For the proof of (3), let Mn×n(R) = Rn2
be the set of n× n matrices and let

µ : Mn×n(R)×Mn×n(R) −→Mn×n(R) (A,B) 7→ AB

be the map given by matrix multiplication. By Lemma 1.21 the map µ is continuous if and
only if the composition

Mn×n(R)×Mn×n(R)
µ−→Mn×n(R)

pij−→ R

is continuous for all 1 ≤ i, j ≤ n, where pij is the projection map that sends a matrix A to
its entry Aij ∈ R. Since the pij(µ(A,B)) = (A · B)ij is a polynomial in the entries of the
matrices A and B, this is a continuous map by part (2) and hence µ is continuous.

Restricting µ to invertible matrices, we obtain the multiplication map

µ| : GLn(R)×GLn(R) −→ GLn(R)

that we want to show is continuous. We will argue that in general if f : X → Y is a
continuous map with f(A) ⊂ B for subsets A ⊂ X, B ⊂ Y , then the restriction f|A : A→ B
is continuous. To prove this, consider the commutative diagram

A
f|A //

i
��

B

j
��

X
f // Y

where i, j are the obvious inclusion maps. These inclusion maps are continuous w.r.t. the
subspace topology on A, B by Lemma 1.18. The continuity of f and i implies the continuity
of f ◦ i = j ◦ f|A which again by Lemma 1.18 implies the continuity of f|A.

1.3.3 Quotient topology.

Definition 1.23. Let X be a topological space and let ∼ be an equivalence relation on X.
We denote by X/ ∼ be the set of equivalence classes and by

p : X → X/ ∼ x 7→ [x]

be the projection map that sends a point x ∈ X to its equivalence class [x]. The quotient
topology on X/ ∼ is given by the collection of subsets

U = {U ⊂ X/ ∼| p−1(U) is an open subset of X}.

The set X/ ∼ equipped with the quotient topology is called the quotient space.
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The quotient topology is often used to construct a topology on a set Y which is not a
subset of some Euclidean space Rn, or for which it is not clear how to construct a metric. If
there is a surjective map

p : X −→ Y

from a topological space X, then Y can be identified with the quotient space X/ ∼, where the
equivalence relation is given by x ∼ x′ if and only if p(x) = p(x′). In particular, Y = X/ ∼
can be equipped with the quotient topology. Here are important examples.

Example 1.24. 1. The real projective space of dimension n is the set

RPn := {1-dimensional subspaces of Rn+1}.

The map
Sn −→ RPn Rn+1 3 v 7→ subspace generated by v

is surjective, leading to the identification

RPn = Sn/(v ∼ ±v),

and the quotient topology on RPn.

2. Similarly, working with complex vector spaces, we obtain a quotient topology on the
the complex projective space

CPn := {1-dimensional subspaces of Cn+1} = S2n+1/(v ∼ zv), z ∈ S1

3. Generalizing, we can consider the Grassmann manifold

Gk(Rn+k) := {k-dimensional subspaces of Rn+k}.

There is a surjective map

Vk(Rn+k) = {(v1, . . . , vk) | vi ∈ Rn+k, vi’s are orthonormal} � Gk(Rn+k)

given by sending (v1, . . . , vk) ∈ Vk(Rn+k) to the k-dimensional subspace of Rn+k spanned
by the vi’s. Hence the subspace topology on the Stiefel manifold Vk(Rn+k) ⊂ R(n+k)k

gives a quotient topology on the Grassmann manifold Gk(Rn+k) = Vk(Rn+k)/ ∼. The
same construction works for the complex Grassmann manifold Gk(Cn+k).

As the examples below will show, sometimes a quotient space X/ ∼ is homeomorphic
to a topological space Z constructed in a different way. To establish the homeomorphism
between X/ ∼ and Z, we need to construct continuous maps

f : X/ ∼ −→ Z g : Z → X/ ∼

that are inverse to each other. The next lemma shows that it is easy to check continuity of
the map f , the map out of the quotient space.

Lemma 1.25. The projection map p : X → X/ ∼ is continuous and a map f : X/ ∼ → Z to
a topological space Z is continuous if and only if the composition f ◦p : X → Z is continuous.
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As we will see in the next section, there are many situations where the continuity of the
inverse map for a continuous bijection f is automatic. So in the examples below, and for the
exercises in this section, we will defer checking the continuity of f−1 to that section.

Notation. Let A be a subset of a topological space X. Define a equivalence relation ∼ on
X by x ∼ y if x = y or x, y ∈ A. We use the notation X/A for the quotient space X/ ∼.

Example 1.26. (1) We claim that the quotient space [−1,+1]/{±1} is homeomorphic to
S1 via the map f : [−1,+1]/{±1} → S1 given by [t] 7→ eπit. Geometrically speaking, the
map f wraps the interval [−1,+1] once around the circle. Here is a picture.

−1 +1

glue

≈

It is easy to check that the map f is a bijection. To see that f is continuous, consider
the composition

[−1,+1]
p // [−1,+1]/{±1} f // S1 i // C = R2,

where p is the projection map and i the inclusion map. This composition sends t ∈
[−1,+1] to eπit = (sinπt, cosπt) ∈ R2. By Lemma 1.21 it is a continuous function, since
its component functions sinπt and cosπt are continuous functions. By Lemma 1.25 the
continuity of i ◦ f ◦ p implies the continuity of i ◦ f , which by Lemma 1.18 implies the
continuity of f . As mentioned above, we’ll postpone the proof of the continuity of the
inverse map f−1 to the next section.

(2) More generally, Dn/Sn−1 is homeomorphic to Sn. (proof: homework)

(3) Consider the quotient space of the square [−1,+1]× [−1,+1] given by identifying (s,−1)
with (s, 1) for all s ∈ [−1, 1]. It can be visualized as a square whose top edge is to be
glued with its bottom edge. In the picture below we indicate that identification by
labeling those two edges by the same letter.

glue

a

a
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The quotient ([−1,+1]× [−1,+1]) /(s,−1) ∼ (s,+1) is homeomorphic to the cylinder

C = {(x, y, z) ∈ R3 | x ∈ [−1,+1], y2 + z2 = 1}.

The proof is essentially the same as in (1). A homeomorphism from the quotient space
to C is given by f([s, t]) = (s, sin πt, cosπt). The picture below shows the cylinder C
with the image of the edge a indicated.

a

(4) Consider again the square, but this time using an equivalence relations that identifies
more points than the one in the previous example. As before we identify (s,−1) and
(s, 1) for s ∈ [−1, 1], and in addition we identify (−1, t) with (1, t) for t ∈ [−1, 1]. Here
is the picture, where again corresponding points of edges labeled by the same letter are
to be identified.

a

a

b b

We claim that the quotient space is homeomorphic to the torus

T := {x ∈ R3 | d(x,K) = d},

where K = {(x1, x2, 0) | x21 + x22 = 1} is the unit circle in the xy-plane and 0 < d < 1
is a real number (see ) via a homeomorphism that maps the edges of the square to the
loops in T indicated in the following picture below.

b

a

Exercise: prove this by writing down an explicity map from the quotient space to T , and
arguing that this map is a continuous bijection (as always in this section, we defer the
proof of the continuity of the inverse to the next section).

(5) We claim that the quotient space Dn/ ∼ with equivalence relation generated by v ∼ −v
for v ∈ Sn−1 ⊂ Dn is homeomorphic to the real projective space RPn. Proof: exercise.
In particular, RP1 = S1/v ∼ −v is homeomorphic to D1/ ∼= [−1, 1]/ − 1 ∼ 1, which
by example (1) is homeomorphic to S1.
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(6) The quotient space [−1, 1] × [−1, 1]/ ∼ with the equivalence relation generated by
(−1, t) ∼ (1,−t) is represented graphically by the following picture.

b b

This topological space is called the Möbius band. It is homeomorphic to a subspace of
R3 shown by the following picture

(7) The quotient space of the square by edge identifications given by the picture

a

a

b b

is the Klein bottle. It is harder to visualize, since it is not homeomorphic to a subspace
of R3 (which can be proved by the methods of algebraic topology).

(8) The quotient space of the square given by the picture

a

a

b b

is homeomorphic to the real projective plane RP2. Exercise: prove this (hint: use the
statement of example (5)). Like the Klein bottle, it is challenging to visualize the real
projective plane, since it is not homeomorphic to a subspace of R3.

1.4 Properties of topological spaces

In the previous subsection we described a number of examples of topological spaces X, Y that
we claimed to be homeomorphic. We typically constructed a bijection f : X → Y and argued
that f is continuous. However, we did not finish the proof that f is a homeomorphism, since
we defered the argument that the inverse map f−1 : Y → X is continuous. We note that not
every continuous bijection is a homeomorphism. For example if X is a set, Xδ (resp. Xind)
is the topological space given by equipping the set X with the discrete (resp. indiscrete)
topology, then the identity map is a continuous bijection from Xδ to Xind. However its
inverse, the identity map Xind → Xδ is not continuous if X contains at least two points.

Fortunately, there are situations where the continuity of the inverse map is automatic as
the following proposition shows.
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Proposition 1.27. Let f : X → Y be a continuous bijection. Then f is a homeomorphism
provided X is compact and Y is Hausdorff.

The goal of this section is to define these notions, prove the proposition above, and to
give a tools to recognize that a topological space is compact and/or Hausdorff.

1.4.1 Hausdorff spaces

Definition 1.28. Let X be a topological space, xi ∈ X, i = 1, 2, . . . a sequence in X and
x ∈ X. Then x is the limit of the xi’s if for any open subset U ⊂ X containing x there is
some N such that xi ∈ U for all i ≥ N .

Caveat: If X is a topological space with the indiscrete topology, every point is the limit
of every sequence. The limit is unique if the topological space has the following property:

Definition 1.29. A topological space X is Hausdorff if for every x, y ∈ X, x 6= y, there are
disjoint open subsets U, V ⊂ X with x ∈ U , y ∈ V .

Note: if X is a metric space, then the metric topology on X is Hausdorff (since for x 6= y
and ε = d(x, y)/2, the balls Bε(x), Bε(y) are disjoint open subsets). In particular, any subset
of Rn, equipped with the subspace topology, is Hausdorff.

Warning: The notion of Cauchy sequences can be defined in metric spaces, but not in
general for topological spaces (even when they are Hausdorff).

Lemma 1.30. Let X be a topological space and A a closed subspace of X. If xn ∈ A is a
sequence with limit x, then x ∈ A.

Proof. Assume x /∈ A. Then x is a point in the open subset X \ A and hence by the
definition of limit, all but finitely many elements xn must belong to X \A, contradicting our
assumptions.

1.4.2 Compact spaces

Definition 1.31. An open cover of a topological space X is a collection of open subsets of
X whose union is X. If for every open cover of X there is a finite subcollection which also
covers X, then X is called compact.

Some books (like Munkres’ Topology) refer to open covers as open coverings, while newer
books (and wikipedia) seem to prefer to above terminology, probably for the same reasons
as me: to avoid confusions with covering spaces, a notion we’ll introduce soon.

Now we’ll prove some useful properties of compact spaces and maps between them, which
will lead to the important Corollaries ?? and 1.34.

Lemma 1.32. If f : X → Y is a continuous map and X is compact, then the image f(X)
is compact.

In particular, if X is compact, then any quotient space X/ ∼ is compact, since the
projection map X → X/ ∼ is continuous with image X/ ∼.
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Proof. To show that f(X) is compact assume that {Ua}, a ∈ A is an open cover of the
subspace f(X). Then each Ua is of the form Ua = Va ∩ f(X) for some open subset Va ∈ Y .
Then {f−1(Va)}, a ∈ A is an open cover of X. Since X is compact, there is a finite subset
A′ of A such that {f−1(Va)}, a ∈ A′ is a cover of X. This implies that {Ua}, a ∈ A′ is a
finite cover of f(X), and hence f(X) is compact.

Lemma 1.33. 1. If K is a closed subspace of a compact space X, then K is compact.

2. If K is compact subspace of a Hausdorff space X, then K is closed.

Proof. To prove (1), assume that {Ua}, a ∈ A is an open covering of K. Since the Ua’s
are open w.r.t. the subspace topology of K, there are open subsets Va of X such that
Ua = Va ∩K. Then the Va’s together with the open subset X \K form an open covering of
X. The compactness of X implies that there is a finite subset A′ ⊂ A such that the subsets
Va for a ∈ A′, together with X \K still cover X. It follows that Ua, a ∈ A′ is a finite cover
of K, showing that K is compact.

The proof of part (2) is a homework problem.

Corollary 1.34. If f : X → Y is a continuous bijection with X compact and Y Hausdorff,
then f is a homeomorphism.

Proof. We need to show that the map g : Y → X inverse to f is continuous, i.e., that
g−1(U) = f(U) is an open subset of Y for any open subset U of X. Equivalently (by passing
to complements), it suffices to show that g−1(C) = f(C) is a closed subset of Y for any
closed subset C of C.

Now the assumption that X is compact implies that the closed subset C ⊂ X is compact
by part (1) of Lemma 1.33 and hence f(C) ⊂ Y is compact by Lemma 1.32. The assumption
that Y is Hausdorff then implies by part (2) of Lemma 1.33 that f(C) is closed.

Lemma 1.35. Let K be a compact subset of Rn. Then K is bounded, meaning that there
is some r > 0 such that K is contained in the open ball Br(0) := {x ∈ Rn | d(x, 0) < r}.

Proof. The collection Br(0) ∩K, r ∈ (0,∞), is an open cover of K. By compactness, K is
covered by a finite number of these balls; if R is the maximum of the radii of these finitely
many balls, this implies K ⊂ BR(0) as desired.

Corollary 1.36. If f : X → R is a continuous function on a compact space X, then f has
a maximum and a minimum.

Proof. K = f(X) is a compact subset of R. Hence K is bounded, and thus K has an infimum
a := inf K ∈ R and a supremum b := supK ∈ R. The infimum (resp. supremum) of K is the
limit of a sequence of elements in K; since K is closed (by Lemma 1.33 (2)), the limit points
a and b belong to K by Lemma 1.30. In other words, there are elements xmin, xmax ∈ X
with f(xmin) = a ≤ f(x) for all x ∈ X and f(xmax) = b ≥ f(x) for all x ∈ X.
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In order to use Corollaries 1.34 and 1.36, we need to be able to show that topological
spaces we are interested in, are in fact compact. Note that this is quite difficult just working
from the definition of compactness: you need to ensure that every open cover has a finite
subcover. That sounds like a lot of work...

Fortunately, there is a very simple classical characterization of compact subspaces of
Euclidean spaces:

Theorem 1.37. (Heine-Borel Theorem) A subspace X ⊂ Rn is compact if and only if
X is closed and bounded.

We note that we’ve already proved that if K ⊂ Rn is compact, then K is a closed subset
of Rn (Lemma 1.33(2)), and K is bounded (Lemma 1.35).

There two important ingredients to the proof of the converse, namely the following two
results:

Lemma 1.38. A closed interval [a, b] is compact.

This lemma has a short proof that can be found in any pointset topology book, e.g., [?].

Theorem 1.39. If X1, . . . , Xn are compact topological spaces, then their product X1×· · ·×Xn

is compact.

For a proof see e.g. [?, Ch. 3, Thm. 5.7]. The statement is true more generally for a
product of infinitely many compact space (as discussed in [?, p. 113], the correct definition
of the product topology for infinite products requires some care), and this result is called
Tychonoff’s Theorem, see [?, Ch. 5, Thm. 1.1].

Proof of the Heine-Borel Theorem. Let K ⊂ Rn be closed and bounded, say K ⊂ Br(0).
We note that Br(0) is contained in the n-fold product

P := [−r, r]× · · · × [−r, r] ⊂ Rn

which is compact by Theorem 1.39. So K is a closed subset of P and hence compact by
Lemma 1.33(1).

1.4.3 Connected spaces

Definition 1.40. A topological space X is connected if it can’t be written as decomposed
in the form X = U ∪ V , where U, V are two non-empty disjoint open subsets of X.

For example, if a, b, c, d are real numbers with a < b < c < d, consider the subspace
X = (a, b) q (c, d) ⊂ R. The topological space X is not connected, since U = (a, b),
V = (c, d) are open disjoint subsets of X whose union is X. This remains true if we replace
the open intervals by closed intervals. The space X ′ = [a, b] q [c, d] is not connected, since
it is the disjoint union of the subsets U ′ = [a, b], V ′ = [c, d]. We want to emphasize that
while U ′ and V ′ are not open as subsets of R, they are open subsets of X ′, since they can be
written as

U ′ = (−∞, c) ∩X ′ V ′ = (b,∞) ∩X ′,

showing that they are open subsets for the subspace topology of X ′ ⊂ R.
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Lemma 1.41. Any interval I in R (open, closed, half-open, bounded or not) is connected.

Proof. Using proof by contradiction, let us assume that I has a decomposition I = U ∪ V
as the union of two non-empty disjoint open subsets. Pick points u ∈ U and v ∈ V , and let
us assume u < v without loss of generality. Then

[u, v] = U ′ ∪ V ′ with U ′ := U ∩ [u, v] V ′ := U ∩ [u, v]

is a decomposition of [u, v] as the disjoint union of non-empty disjoint open subsets U ′, V ′

of [u, v]. We claim that the supremum c := supU ′ belongs to both, U ′ and V ′, thus leading
to the desired contradiction. Here is the argument.

• Assuming that c doesn’t belong to U ′, for any ε > 0, there must be some element of
U ′ belonging to the interval (c− ε, c), allowing us to construct a sequence of elements
ui ∈ U ′ converging to c. This implies c ∈ U ′ by Lemma 1.30, since U ′ is a closed
subspace of [u, v] (its complement V ′ is open).

• By construction, every x ∈ [u, v] with x > c = supU ′ belongs to V ′. So we can
construct a sequence vi ∈ V ′ converging to c. Since V ′ is a closed subset of [u, v], we
conclude c ∈ V ′.

Theorem 1.42. (Intermediate Value Theorem) Let X be a connected topological space,
and f : X → R a continuous map. If elements a, b ∈ R belong to the image of f , then also
any real number c between a and b belongs to the image of f .

Proof. Assume that c is not in the image of f . Then X = f−1(−∞, c) ∪ f−1(c,∞) is a
decomposion of X as a union of non-empty disjoint open subsets.

There is another notion, closely related to the notion of connected topological space,
which might be easier to think of geometrically.

Definition 1.43. A topological space X is path connected if for any points x, y ∈ X there
is a path connecting them. In other words, there is a continuous map γ : [a, b] → X from
some interval to X with γ(a) = x, γ(b) = y.

Lemma 1.44. Any path connected topological space is connected.

Proof. Using proof by contradiction, let us assume that the topological space X is path
connected, but not connected. So there is a decomposition X = U ∪ V of X as the union of
non-empty open subsets U, V ⊂ X. The assumption that X is path connected allows us to
find a path γ : [a, b]→ X with γ(a) ∈ U and γ(b) ∈ V . Then we obtain the decomposition

[a, b] = f−1(U) ∪ f−1(V )

of the interval [a, b] as the disjoint union of open subsets. These are non-empty since a ∈
f−1(U) and b ∈ f−1(V ). This implies that [a, b] is not connected, the desired contradiction.
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For typical topological spaces we will consider, the properties “connected” and “path
connected” are equivalent. But here is an example known as the topologist’s sine curve
which is connected, but not path connected, see [?, Example 7, p. 156]. It is the following
subspace of R2:

X = {(x, sin 1

x
) ∈ R2 | 0 < x < 1} ∪ {(0, y) ∈ R2 | −1 ≤ y ≤ 1}.
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