Homework Assignment \# 10, due Nov. 14

1. Let $M_{n \times k}(\mathbb{R})$ be the vector space of $n \times k$-matrices. For $A \in M_{n \times k}(\mathbb{R})$ let $A^{t} \in M_{k \times n}(\mathbb{R})$ be the transpose of A, and let $\operatorname{Sym}\left(\mathbb{R}^{k}\right)=\left\{B \in M_{k \times k}(\mathbb{R}) \mid B^{t}=B\right\}$ be the vector space of symmetric $k \times k$-matrices.
(a) Show that the map $\Phi: M_{n \times k}(\mathbb{R}) \rightarrow \operatorname{Sym}\left(\mathbb{R}^{k}\right), A \mapsto A^{t} A$ is smooth, and that its differential

$$
\Phi_{*}: T_{A} M_{n \times k}(\mathbb{R})=M_{n \times k}(\mathbb{R}) \longrightarrow T_{\Phi(A)} \operatorname{Sym}\left(\mathbb{R}^{k}\right)=\operatorname{Sym}\left(\mathbb{R}^{k}\right)
$$

is given by $\Phi_{*}(C)=C^{t} A+A^{t} C$. Hint: Use the geometric description of tangent spaces. More explicitly, the tangent space $T_{A} M_{n \times k}(\mathbb{R})$ can be identified with $M_{n \times n}(\mathbb{R})$ by sending a matrix $C \in M_{n \times n}(\mathbb{R})$ to the path $\gamma(t):=A+t C$.
(b) Show that the identity matrix is a regular value of the map Φ.
(c) What is the dimension of the smooth manifold $V_{k}\left(\mathbb{R}^{n}\right)$, which we showed in class is equal to Φ^{-1} (identity matrix)?

We remark that identifying $M_{n \times k}(\mathbb{R})$ in the usual way with the vector space $\operatorname{Hom}\left(\mathbb{R}^{k}, \mathbb{R}^{n}\right)$ of linear maps $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$, a matrix belongs to $V_{k}\left(\mathbb{R}^{n}\right)$ if and only if the corresponding linear map f is an isometry, that is, if f preserves the length of vectors in the sense that $\|f(v)\|=\|v\|$, or equivalently, if f preserves the scalar product in the sense that

$$
\langle f(v), f(w)\rangle=\langle v, w\rangle \quad \text { for all } v, w \in \mathbb{R}^{k} .
$$

The manifold $V_{k}\left(\mathbb{R}^{n}\right)$ is called the Stiefel manifold. We observe that $V_{n}\left(\mathbb{R}^{n}\right)$ is the orthogonal group $O(n)$ of isometries $\mathbb{R}^{n} \rightarrow R^{n}$.
2. Recall that the special linear group $S L_{n}(\mathbb{R})$ and the orthogonal group $O(n)$ are both submanifolds of the vector space $M_{n \times n}(\mathbb{R})$ of $n \times n$ matrices. In particular, the tangent spaces $T_{A} S L_{n}(\mathbb{R})$ for $A \in S L_{n}(\mathbb{R})$ and $T_{A} O(n)$ for $A \in O(n)$ are subspaces of the tangent space $T_{A} M_{n \times n}(\mathbb{R})$, which can be identified with $M_{n \times n}(\mathbb{R})$, since $M_{n \times n}(\mathbb{R})$ is a vector space.
(a) Show that $T_{e} S L_{n}(\mathbb{R})=\left\{C \in M_{n \times n} \mid \operatorname{tr}(C)=0\right\}$, where e is the identity matrix, and $\operatorname{tr}(C)$ denotes the trace of the matrix C. Hint for parts (a) and (b): $S L_{n}(\mathbb{R})$ and $O(n)$ can be both be described as level sets $F^{-1}(c)$ of a regular value c for a suitable smooth map F.
(b) Show that $T_{e} O(n)=\left\{C \in M_{n \times n} \mid C^{t}=-C\right\}$.
(c) Let $G \subset M_{n \times n}(\mathbb{R})$ be either the group $S L_{n}(\mathbb{R})$ or the group $O(n)$. For $A \in G$ let $L_{A}: G \rightarrow G$ be the map given by left multiplication by A, i.e., $B \mapsto A B$. Show that the differential

$$
\left(L_{A}\right)_{*}: T_{B} G \longrightarrow T_{A B} G \quad \text { is given by } \quad C \mapsto A C,
$$

where we identify all of these tangent spaces as subspaces of $M_{n \times n}(\mathbb{R})$. Hint: Compute first the differential of the map $\mathbb{M}_{n \times n}(\mathbb{R}) \rightarrow \mathbb{M}_{n \times n}(\mathbb{R}), B \mapsto A B$, and then compare with $\left(L_{A}\right)_{*}$.
(d) Use parts (a)-(c) to determine the tangent space $T_{A} G \subset M_{n \times n}(\mathbb{R})$ for $A \in G$ and $G=S L_{n}(\mathbb{R})$, as well as $G=O(n)$.
3. Show that the projection map $p: S^{2 n+1} \rightarrow \mathbb{C P}^{n}$ is a submersion, i.e., the differential $p_{*}: T_{z} S^{2 n+1} \rightarrow T_{p(z)} \mathbb{C P}^{n}$ is surjective for every point $z \in S^{2 n+1}$. (In particular, each fiber $p^{-1}(L), L \in \mathbb{C P}^{n}$ is a submanifold of dimension 1). Hint: The projection map p extends to a projection map $P: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C P}^{n}$. Argue first that P is a submersion, using the obvious identification of tangent spaces of the domain with \mathbb{C}^{n+1}, and using the differential of our standard charts for $\mathbb{C P}^{n}$ to identify the tangent spaces of the range with \mathbb{C}^{n}.
4. Let M be a smooth manifold of dimension n. If $f: M \rightarrow \mathbb{R}$ is a smooth function, then for $p \in M$ its differential

$$
f_{*}: T_{p} M \longrightarrow T_{f(p)} \mathbb{R}=\mathbb{R}
$$

is an element of $\operatorname{Hom}\left(T_{p} M, \mathbb{R}\right)$. This vector space dual to the tangent space $T_{p} M$ is called the cotangent space, and is denoted $T_{p}^{*} M$. It is common to write $d f_{p} \in T_{p}^{*} M$ for the differential $f_{*}: T_{p} M \rightarrow \mathbb{R}$.
(a) Let $x^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the i-th coordinate function, which maps $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ to $x_{i} \in \mathbb{R}$. Show that for any point $q \in \mathbb{R}^{n}$ a basis of the cotangent space $T_{q}^{*} \mathbb{R}^{n}$ is given by $\left\{d x_{q}^{i}\right\}_{i=1, \ldots, n}$.
(b) If $M \supset U \xrightarrow{\phi} V \subset \mathbb{R}^{n}$ is a smooth chart of M, the component functions of ϕ, given by $y^{i}:=x^{i} \circ \phi$ are called local coordinates. Show that for $p \in U$, a basis of the cotangent space $T_{p}^{*} M$ is given by $\left\{d y_{p}^{i}\right\}_{i=1, \ldots, n}$.

Hint for part (b): let $\phi^{*}: T_{q}^{*} \mathbb{R}^{n} \rightarrow T_{p}^{*} M, q=\phi(p)$ be the linear map dual to the differential $\phi_{*}: T_{p} M \rightarrow T_{q} \mathbb{R}^{n}$ defined by

$$
\left(\phi^{*} \xi\right)(v)=\xi\left(\phi_{*}(v)\right) \quad \text { for } \xi \in T_{q}^{*} \mathbb{R}^{n} \text { and } v \in T_{p} M
$$

Show first that $\phi^{*}\left(d x_{q}^{i}\right)=d y_{p}^{i}$.

