Homework Assignment # 11, Nov. 28

- 1. Let M be a smooth manifold.
- (a) Show that if $f: M \to \mathbb{R}$ is a smooth function, then its differential df is a smooth section of the cotangent bundle T^*M . Hint: smoothness of a section s is a local property and hence to check smoothness it suffices to check that the composition $\Phi_{\alpha} \circ s$ is smooth for local trivializations Φ_{α} of the vector bundle.
- (b) Let $\mu : \mathbb{R} \times M \to M$ be an action of the group \mathbb{R} on M which is smooth in the sense that μ is a smooth map. For any point $p \in M$, let $\gamma_p : \mathbb{R} \to M$ be the smooth path given by $\gamma_p(s) = \mu(s, p)$ and let $V_p \in T_p M$ be the tangent vector of this path at s = 0, i.e., $V_p := \gamma'_V(0)$ (in other words, V_p is the image of $1 \in \mathbb{R}$ under the differential $(\gamma_p)_* : \mathbb{R} = T_0 \mathbb{R} \to T_p M$). For $M = S^2$, and the \mathbb{R} -action on S^2 given by rotating the sphere around the z-axis draw a picture of the vector field V (represented by arrows at a few points of S^2).
- (c) Show that the section V of TM given by $M \ni p \mapsto V_p \in T_pM$ is smooth. Hint: to check smoothness at a point p choose a smooth chart (U, ϕ) with $p \in U$ and show that there is some $\epsilon > 0$ and an open subset V such that $\mu((-\epsilon, \epsilon) \times V) \subset U$.

We remark that a smooth \mathbb{R} -action on a manifold M is called a *flow*, and the associated vector field V is the *infinitesimal generator* of this flow.

2. The goal of this problem is to prove the *Vector Bundle Construction Lemma* we stated in class.

- (a) Let E be a set which is the union of subsets V_{α} , $\alpha \in A$. Given a topology \mathcal{T}_{α} on each subset V_{α} , show that this determines a topology \mathcal{T} on E by defining a subset $V \subset E$ to be open (with respect to \mathcal{T}) if and only if $V \cap V_{\alpha}$ is an open subset of V_{α} (with respect to the topology \mathcal{T}_{α}).
- (b) Show that the subspace topology on V_{α} agrees with \mathcal{T}_{α} provided for every $V \subset V_{\alpha}$ which belongs to T_{α} the intersection $V \cap V_{\beta} \subset V_{\beta}$ is open (with respect to the topology \mathcal{T}_{β}).
- (c) Prove the following Vector Bundle Construction Lemma: Let M be a topological space, E_p a collection of vector spaces parametrized by $p \in M$, and let $\{U_{\alpha}\}_{\alpha \in A}$ be an open cover of M. Let E be the set

$$E := \prod_{p \in M} E_p = \{(p, v) \mid p \in M, \ v \in E_p\}$$

and define $\pi: E \to M$ by $\pi(p, v) = p$. For each $\alpha \in A$, let $\Phi_{\alpha}: \pi^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times \mathbb{R}^{n}$ be a bijection with the following properties:

(i) The diagram

is commutative, where π_1 is the projection onto the first factor.

- (ii) The restriction of Φ_{α} to $E_p = \pi^{-1}(p)$ is a vector space isomorphism between E_p and $\{p\} \times \mathbb{R}^n = \mathbb{R}^n$.
- (iii) For $\alpha, \beta \in A$, the composition

$$(U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^n \xrightarrow{\Phi_{\alpha}^{-1}} \pi^{-1}(U_{\alpha} \cap U_{\beta}) \xrightarrow{\Phi_{\beta}} (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^n$$

is continuous.

Then there is a topology on E such that $\pi: E \to M$ is a vector bundle with local trivializations Φ_{α} .

(d) Prove that the construction of Part (c) gives a *smooth* vector bundle with *smooth* local trivializations Φ_{α} if we assume in addition that M is a smooth manifold and that the transition maps $\Phi_{\beta} \circ \Phi_{\alpha}^{-1}$ are smooth.

3. The vector bundles over a fixed topological space M are the objects of a category; the morphisms from a vector bundle $E \to M$ to a vector bundle $F \to M$, called *vector bundle maps*, are defined to be the continuous maps $f: E \to F$ that commute with the projection maps to M and whose restriction $f_{|E_p}: E_p \to F_p$ to each fiber E_p is a linear map. The composition of vector bundle maps is again a vector bundle map, and hence we have a category of vector bundles over M.

- (a) Show that a vector bundle map $f: E \to F$ is a vector bundle isomorphisms if and only if the restriction $f_{|E_p}: E_p \to F_p$ is a linear isomorphism. Hint: the issue is to prove continuity of the inverse of the vector bundle bundle map f. Continuity is a *local* property, making it possible to check continuity using local trivializations. Use the fact that the map $GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ given by $A \mapsto A^{-1}$ is continuous (which was problem # 4 in the first homework assignment).
- (b) Show that the map $GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ given by $A \mapsto A^{-1}$ is smooth.
- (c) Prove the analog of (a) for *smooth* vector bundle maps. More precisely, let M be a smooth manifold and consider the category whose objects are smooth vector bundles over M, and whose morphisms are smooth vector bundle map, i.e., vector bundle maps

 $f: E \to F$ which are smooth (as maps between smooth manifolds). Show that a smooth vector bundle map $f: E \to F$ is a vector bundle isomorphisms if and only if the restriction $f_{|E_p}: E_p \to F_p$ is a linear isomorphism for all $p \in M$. Hint: same hint as for part (a), just replace "continuous" by "smooth" throughout.

4. We recall that a point of the real projective space \mathbb{RP}^n is a line L in the Euclidean space \mathbb{R}^{n+1} , i.e., L is a 1-dimensional subspace of \mathbb{R}^{n+1} . Moreover, the *tautological real line bundle* $p: E \to \mathbb{RP}^n$ has total space

$$E = \{ (L, v) \mid L \in \mathbb{RP}^n, v \in L \subset \mathbb{R}^{n+1} \} \subset \mathbb{RP}^n \times \mathbb{R}^{n+1} \}$$

equipped with the subspace topology for the product topology on $\mathbb{RP}^n \times \mathbb{R}^{n+1}$. The projection map p sends a point $(L, v) \in E$ to $L \in \mathbb{RP}^n$ and the fiber $E_L = p^{-1}(L) = \{(L, v) \mid v \in L\}$ for a fixed $L \in \mathbb{RP}^n$ can obviously be identified with L. In particular, E_L has a vector space structure. The tautological complex line bundle over the complex projective space \mathbb{CP}^n is defined analogously.

- (a) Show that the tautological real line bundle $E \to \mathbb{RP}^1 \approx S^1$ is isomorphic to the Möbius band (whose total space we defined to be the quotient space $[0,1] \times \mathbb{R}/(0,t) \sim (1,-t)$). Hint: Use problem 3(a).
- (b) Show that $E \to \mathbb{RP}^1$ is not isomorphic to the trivial line bundle $F = \mathbb{RP}^1 \times \mathbb{R}$. Hint: Argue that the topological spaces $E \setminus \text{zero-section}$ and $F \setminus \text{zero-section}$ are not homeomorphic (the zero-section of a vector bundle is the subspace of the total space consisting of the zero-vectors of all fibers).
- (c) Show that the tautological complex line bundle $E \to \mathbb{CP}^1$ is not isomorphic to the trivial complex line bundle $F = \mathbb{CP}^1 \times \mathbb{C} \to \mathbb{CP}^1$. Hint: Show that $E \setminus \text{zero-section}$ is homeomorphic to $\mathbb{C}^2 \setminus \{0\}$ and argue that $E \setminus \text{zero-section}$ and $F \setminus \text{zero-section}$ are not homeomorphic by contemplating their fundamental group.