Homework Assignment \# 12, Dec. 5

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth map. Show that

$$
f^{*}\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)=\operatorname{det}\left(T_{x} f\right) d x_{1} \wedge \cdots \wedge d x_{n}
$$

where $T_{x} f: T_{x} \mathbb{R}^{n} \rightarrow T_{f(x)} \mathbb{R}^{n}$ is the differential of f at the point $x \in \mathbb{R}^{n}$.
2. For any smooth manifold M the de Rham differential (also called exterior differential) is the unique map $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ with the following properties:
(i) d is linear.
(ii) For a function $f \in C^{\infty}(M)=\Omega^{0}(M)$ the 1-form $d f \in \Omega^{1}(M)=\Gamma^{\infty}\left(M, T^{*} M\right)$ is the usual differential of f.
(iii) d is a graded derivation with respect to the wedge product; i.e.,

$$
d(\omega \wedge \eta)=(d \omega) \wedge \eta+(-1)^{k} \omega \wedge d \eta \quad \text { for } \omega \in \Omega^{k}(M), \eta \in \Omega^{l}(M)
$$

(iv) $d^{2}=0$.

Show that for $M=\mathbb{R}^{n}$ the de Rham differential of the k-form

$$
\omega=f d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \quad \text { for } f \in C^{\infty}\left(\mathbb{R}^{n}\right), i_{1}<i_{2}<\cdots<i_{k}
$$

is given explicitly by the formula

$$
d \omega=\sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}} d x^{j} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

We note that every k-form $\eta \in \Omega^{k}\left(\mathbb{R}^{n}\right)$ can be written uniquely in the form

$$
\eta=\sum_{i_{1}<\cdots<i_{k}} f_{i_{1}, \ldots, i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

for smooth functions $f_{i_{1}, \ldots, i_{k}} \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
3. Show that the exterior derivative for differential forms on \mathbb{R}^{3} corresponds to the classical operations of gradient resp. curl resp. divergence. More precisely, show that there is a commutative diagram

Here $\mathfrak{X}\left(\mathbb{R}^{3}\right)$ is the space of vector fields on \mathbb{R}^{3}, and we recall that grad, curl and divergence are given by the formulas

$$
\begin{aligned}
\operatorname{grad}(f) & =\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \\
\operatorname{curl}\left(f_{1}, f_{2}, f_{3}\right) & =\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}, \frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}, \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \\
\operatorname{div}\left(f_{1}, f_{2}, f_{3}\right) & =\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}
\end{aligned}
$$

Here we identify a vector field on \mathbb{R}^{3} with a triple $\left(f_{1}, f_{2}, f_{3}\right)$ of smooth functions on \mathbb{R}^{3}. The vertical isomorphisms are given by
$\left(f_{1}, f_{2}, f_{3}\right) \mapsto f_{1} d x+f_{2} d y+f_{3} d z \quad\left(f_{1}, f_{2}, f_{3}\right) \mapsto f_{1} d y d z+f_{2} d z d x+f_{3} d x d y \quad f \mapsto f d x d y d z$

