Homework Assignment # 4, due Sept. 19

1. Show that the connected sum $\mathbb{RP}^2 \# \mathbb{RP}^2$ of two copies of the real projective plane is homeomorphic to the Klein bottle K.

2. Let Σ , Σ' be compact 2-manifolds. Show that the Euler characteristic of the connected sum $\Sigma \# \Sigma'$ is given by the following formula:

$$\chi(\Sigma \# \Sigma') = \chi(\Sigma) + \chi(\Sigma') - 2.$$

3. Let $\gamma: I \to X$ be a path in a topological space X, and let $\bar{\gamma}: I \to X$ be the path γ run backwards, that is, $\bar{\gamma}(s) = \gamma(1-s)$. Then there are the following homotopies

$$\gamma * \bar{\gamma} \simeq c_{\gamma(0)} \qquad \bar{\gamma} * \gamma \simeq c_{\gamma(1)} \qquad c_{\gamma(0)} * \gamma \simeq \gamma, \qquad \gamma * c_{\gamma(1)} \simeq \gamma \tag{1}$$

where c_x for $x \in X$ denotes the constant path at x.

- (a) Prove the first and the third homotopy.
- (b) Use the homotopies (1) to finish our proof that $\pi_1(X, x_0)$ is a group. In other words, show that the constant map c_{x_0} gives an identity element for $\pi_1(X, x_0)$, and that $[\bar{\gamma}]$ is the inverse for $[\gamma] \in \pi_1(X, x_0)$.
- (c) Let β be a path from x_0 to x_1 . Show that the map

$$\Phi_{\beta} \colon \pi_1(X, x_0) \longrightarrow \pi_1(X, x_1) \qquad [\gamma] \mapsto [\bar{\beta} * \gamma * \beta]$$

is an isomorphism of groups. Note that this implies in particular that the isomorphism class of the fundamental group $\pi(X, x_0)$ of a path connected space does not depend on the choice of the base point $x_0 \in X$.

4. Let $\omega_n \colon (I, \partial I) \to (S^1, 1)$ be the based loop defined by $\omega_n(s) = e^{2\pi i n s}$. Show that the map $\Phi \colon \mathbb{Z} \to \pi_1(S^1, 1)$ given by $n \mapsto [\omega_n]$ is a group homomorphism.