## Homework Assignment # 10, due Nov. 22

1. (15 points) Let  $U \subset \mathbb{R}^n$  be an open subset. Then the map

$$\frac{\partial}{\partial x_i}_{|p} \colon C_p^\infty(U) \longrightarrow \mathbb{R}$$

given by mapping  $f \in C_p^{\infty}(U)$  to the partial derivative  $\frac{\partial f}{\partial x_i|_p}$  at a point p is an element of  $T_p^{\text{alg}}U = \text{Der}(C_p^{\infty}(U), \mathbb{R})$ ; in other words,  $\frac{\partial}{\partial x_i|_p}$  is a tangent vector of U at the point  $p \in U$  (in the algebraic description of the tangent space).

- (a) Show that the map  $\mathbb{R}^n \to T_p^{\text{alg}}U = \text{Der}(C_p^{\infty}(U), \mathbb{R})$  given by  $v \mapsto \sum_{i=1}^n v_i \frac{\partial}{\partial x_i|_p}$  agrees with the isomorphism constructed in class (given by  $v \mapsto d_v$ ).
- (b) Let V be a smooth vector field on U, i.e., V is a smooth map  $V: U \to \mathbb{R}^n$  with component functions  $V_i: U \to \mathbb{R}$ , i.e.,  $V(p) = (V_1(p), \ldots, V_n(p))$ . For  $f \in C^{\infty}(U)$ , let  $D_V f \in C^{\infty}(U)$  be the smooth function whose value at  $p \in U$  is given by

$$(D_V f)(p) = \sum_{i=1}^n V_i(p) \frac{\partial f}{\partial x_i}_{|p|}$$

Show that the map  $D_V: C^{\infty}(U) \longrightarrow C^{\infty}(U)$  defined by  $f \mapsto D_V f$  is a derivation of the algebra  $C^{\infty}(U)$ , i.e.,  $D_V$  is a linear map with the product rule property

$$D(f \cdot g) = D_V(f) \cdot g + f \cdot D_V(g)$$
 for  $f, g \in C^{\infty}(U)$ .

Terminology and notation: the usual notation is

$$D_V = \sum_{i=1}^n V_i \frac{\partial}{\partial x_i}$$

Geometrically,  $D_V f$  is the derivative of the smooth function f in the direction of the vector field V.

(c) Let  $C^{\infty}(U, \mathbb{R}^n)$  be the vector space of smooth maps  $U \to \mathbb{R}^n$ , and let  $\text{Der}(C^{\infty}(U))$  be the vector space of derivations of the algebra  $C^{\infty}(U)$ . Show that the map

$$C^{\infty}(U, \mathbb{R}^n) \to \operatorname{Der}(C^{\infty}(U))$$
 given by  $V \mapsto D_V$ 

is an isomorphism of vector spaces. Hint: use the isomorphisms  $\mathbb{R}^n \cong \text{Der}(C_p^{\infty}(U), \mathbb{R}) \cong$  $\text{Der}(C^{\infty}(U), \mathbb{R})$  we proved in class (the first is given by  $v \mapsto d_v$ , the second is induced by the restriction map  $C^{\infty}(U)$  from to  $C_p^{\infty}(U)$ ).

- (d) For  $X, Y \in \text{Der}(C^{\infty}(U))$ , define  $[X, Y] := X \circ Y Y \circ X : C^{\infty}(U) \to C^{\infty}(U)$ . Show that the linear map [X, Y] is again a derivation.
- (e) Show that for  $X, Y, Z \in Der(C^{\infty}(U))$  the property

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$
(0.1)

holds.

**Comments.** Property (c) shows that a smooth vector field on U can alternatively be described as a derivation  $X: C^{\infty}(U) \to C^{\infty}(U)$ . This very abstract definition has two advantages:

- it immediately generalizes from open subsets of Euclidean space to smooth manifolds.
- It allows the definition of [X, Y], called the *Lie bracket of the vector fields* X, Y.

A Lie algebra is a vector space L equipped with a map  $[, ]: L \times L \to L$  which is linear in each slot, which is alternating in the sense that [X, Y] = -[Y, X], and which satisfies equation (0.1), called the Jacobi identity. The Lie bracket of smooth vector fields is evidently linear in each slot and alternating; so the result of part (e) can be summarized by saying that the vector space of smooth vector fields on a smooth manifold is a Lie algebra with respect to the Lie bracket of vector fields.

2. (10 points) Let U be an open subset of  $\mathbb{R}^n$  and let  $\gamma : \mathbb{R} \times U \to U$  be a smooth action of the group  $\mathbb{R}$  on U. Let  $V : U \to \mathbb{R}^n$  be the vector field given by  $V(p) := \gamma'_p(0)$ , where  $\gamma_p : \mathbb{R} \to U$  is the smooth path given by  $\gamma_p(t) = \gamma(t, p)$ .

- (a) Show that V is a smooth vector field and write the associated derivation  $D_V$  explicitly in the form  $D_V = \sum_{i=1}^n V_i \frac{\partial}{\partial x_i}$  for smooth functions  $V_i \in C^{\infty}(U)$ .
- (b) Find the explicit formula for the action  $\gamma \colon \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$  where  $\gamma(t, x, y)$  is the point  $(x, y) \in \mathbb{R}^2$  rotated counterclockwise by the angle t.
- (c) Calculate the corresponding vector field  $R = R_1(x, y)\frac{\partial}{\partial x} + R_2(x, y)\frac{\partial}{\partial y}$ , where  $R_1, R_2 \in C^{\infty}(\mathbb{R}^2)$ .
- (d) Give the explicit formula of the action  $\gamma^z \colon \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ , where  $\gamma^z(t, (x, y, z))$  describes the rotation of  $(x, y, z) \in \mathbb{R}^3$  around the z-axis by the angle t. Give an explicit formula for the corresponding vector field  $\mathbb{R}^z$  as a linear combination of the vector fields  $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$ and  $\frac{\partial}{\partial z}$  whose coefficients are smooth functions on  $\mathbb{R}^3$ . Use symmetry considerations (cyclic permutation of the x, y, z coordinates) to write down the vector fields  $\mathbb{R}^x$  and  $\mathbb{R}^y$  corresponding to rotation around the x resp. y axis.

(e) Show that  $[R^x, R^y] = -R^z$ ,  $[R^y, R^z] = -R^x$  and  $[R^z, R^x] = -R^y$ . Hint: calculate one of these bracket relations and deduce the other two by symmetry arguments.

**Comments:** The vector field V corresponding to an  $\mathbb{R}$ -action is called the *infinitesimal* generator of the action. The group SO(3) is the group of rotations of  $\mathbb{R}^3$ ; its Lie algebra is the 3-dimensional vector space with basis  $R^x$ ,  $R^y$  and  $R^z$  and the Lie algebra structure determined by the Lie brackets determined in part (e).

3. (10 points) Let V and W be real vector spaces with bases  $\{v_i\}_{i=1,\dots,m}$  and  $\{w_j\}_{j=1,\dots,n}$ , respectively. Using these bases, construct bases for the following vector spaces that can be constructed from V, W and determine the dimension of these vector spaces. These are standard constructions; there is no need to verify that the collections of vectors you write down in fact form a basis. The point of this exercise is to make sure you know these bases. Feel free to consult the literature to see how this is done.

- (a) The dual vector space  $V^* := \text{Hom}(V, \mathbb{R})$  of linear maps  $f: V \to \mathbb{R}$ .
- (b) The vector space  $\operatorname{Hom}(V, W)$  of linear maps  $f: V \to W$ .
- (c) The vector space  $\operatorname{Mult}(V, W; \mathbb{R})$  of *multilinear maps* (or *bilinear*, since here f has two slots)  $f: V \times W \to \mathbb{R}$ , i.e.,  $f(v, w) \in \mathbb{R}$  is linear in each slot, that is, f(v, w) is a linear function of  $v \in V$  (for fixed  $w \in W$ ) and f(v, w) is a linear function of  $w \in W$  (for fixed  $v \in V$ ).
- (d) The vector space  $\operatorname{Sym}^2(V; \mathbb{R}) \subset \operatorname{Mult}(V, V; \mathbb{R})$  of symmetric bilinear maps  $f: V \times V \to \mathbb{R}$ , i.e., f is a bilinear map which is *symmetric* in the sense that  $f(v_1, v_2) = f(v_2, v_1)$  for all  $v_1, v_2 \in V$ .
- (e) The vector space  $\operatorname{Alt}^2(V; \mathbb{R}) \subset \operatorname{Mult}(V, V; \mathbb{R})$  of alternating bilinear maps  $f: V \times V \to \mathbb{R}$ , i.e., f is a bilinear map which is *alternating* in the sense that  $f(v_1, v_2) = -f(v_2, v_1)$  for all  $v_1, v_2 \in V$ .
- (f) The vector space  $\operatorname{Alt}^3(V; \mathbb{R})$  of alternating multilinear maps  $f: V \times V \times V \to \mathbb{R}$ , i.e., f is linear in each slot and is alternating in the sense that

$$f(v_{\sigma(1)}, v_{\sigma(2)}, v_{\sigma(3)}) = \operatorname{sign}(\sigma) f(v_1, v_2, v_3)$$

for all  $v_1, v_2, v_3 \in V$  and any permutation  $\sigma \in S_3$ . Here  $\operatorname{sign}(\sigma) \in \{\pm 1\}$  is the sign of the permutation  $\sigma$ .

4. (15 points) The goal of this problem is to prove the following result.

4

**Lemma 0.2.** (Vector Bundle Construction Lemma). Let M be a smooth manifold of dimension n, and let  $\{E_p\}$  be a collection of vector spaces parametrized by  $p \in M$ . Let E be the set given by the disjoint union of all these vector spaces, which we write as

$$E := \prod_{p \in M} E_p = \{ (p, v) \mid p \in M, \ v \in E_p \}$$

and let  $\pi: E \to M$  be the projection map defined by  $\pi(p, v) = p$ . Let  $\{U_{\alpha}\}_{\alpha \in A}$  be an open cover of M, and let for each  $\alpha \in A$ , let  $\Phi_{\alpha}: \pi^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times \mathbb{R}^{k}$  be maps with the following properties

(i) The diagram



is commutative, where  $\pi_1$  is the projection onto the first factor.

- (ii) For each  $p \in U_{\alpha}$ , the restriction of  $\Phi_{\alpha}$  to  $E_p = \pi^{-1}(p)$  is a vector space isomorphism between  $E_p$  and  $\{p\} \times \mathbb{R}^k = \mathbb{R}^k$  (which implies that  $\Phi_{\alpha}$  is a bijection).
- (iii) For  $\alpha, \beta \in A$ , the composition

$$(U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^k \xrightarrow{\Phi_{\alpha}^{-1}} \pi^{-1}(U_{\alpha} \cap U_{\beta}) \xrightarrow{\Phi_{\beta}} (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^k$$

is smooth.

Then the total space E can be equipped with the structure of a smooth manifold of dimension n + k such that  $\pi: E \to M$  is a smooth vector bundle of rank k with local trivializations  $\Phi_{\alpha}$ .

- (a) Construct a topology on E by declaring  $U \subset E$  to be *open* if  $\Phi_{\alpha}(U \cap E_{|U_{\alpha}})$  is an open subset of  $U_{\alpha} \times \mathbb{R}^k$  for all  $\alpha \in A$ . Show that this satisfies the conditions for a topology and that with this topology on E the map  $\Phi_{\alpha}$  is a homeomorphism (for the subspace topology on  $E_{|U_{\alpha}}$ ).
- (b) Show that equipped with this topology E is a topological manifold of dimension n + k(don't bother to check the technical conditions of being Hausdorff and second countable). Hint: Let  $\{(V_{\beta}, \psi_{\beta})\}_{\beta \in B}$  be an atlas for M. Show that the bundle chart  $\Phi_{\alpha}$  and the manifold chart  $\psi_{\beta}$  can be used to construct a chart

$$\chi_{\alpha,\beta} \colon E \underset{\text{open}}{\supset} E_{|U_{\alpha} \cap V_{\beta}} \longrightarrow \mathbb{R}^{n+k}$$

- (c) Show that the charts  $\{(E_{|U_{\alpha}\cap V_{\beta}}), \chi_{\alpha,\beta})\}$  for  $(\alpha, \beta) \in A \times B$  form a smooth atlas for E.
- (d) Show that  $\pi: E \to M$  is a smooth vector bundle of rank k with local trivializations provided by  $\Phi_{\alpha}$ .