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Homework Assignment # 10, due Nov. 22

1. (15 points) Let U ⊂ Rn be an open subset. Then the map

∂

∂xi |p
: C∞p (U) −→ R

given by mapping f ∈ C∞p (U) to the partial derivative ∂f
∂xi |p

at a point p is an element of

T alg
p U = Der(C∞p (U),R); in other words, ∂

∂xi |p
is a tangent vector of U at the point p ∈ U

(in the algebraic description of the tangent space).

(a) Show that the map Rn → T alg
p U = Der(C∞p (U),R) given by v 7→

∑n
i=1 vi

∂
∂xi |p

agrees

with the isomorphism constructed in class (given by v 7→ dv).

(b) Let V be a smooth vector field on U , i.e., V is a smooth map V : U → Rn with component
functions Vi : U → R, i.e., V (p) = (V1(p), . . . , Vn(p)). For f ∈ C∞(U), let DV f ∈ C∞(U)
be the smooth function whose value at p ∈ U is given by

(DV f)(p) =
n∑
i=1

Vi(p)
∂f

∂xi |p
.

Show that the map DV : C∞(U) −→ C∞(U) defined by f 7→ DV f is a derivation of the
algebra C∞(U), i.e., DV is a linear map with the product rule property

D(f · g) = DV (f) · g + f ·DV (g) for f, g ∈ C∞(U).

Terminology and notation: the usual notation is

DV =
n∑
i=1

Vi
∂

∂xi
.

Geometrically, DV f is the derivative of the smooth function f in the direction of the
vector field V .

(c) Let C∞(U,Rn) be the vector space of smooth maps U → Rn, and let Der(C∞(U)) be
the vector space of derivations of the algebra C∞(U). Show that the map

C∞(U,Rn)→ Der(C∞(U)) given by V 7→ DV

is an isomorphism of vector spaces. Hint: use the isomorphisms Rn ∼= Der(C∞p (U),R) ∼=
Der(C∞(U),R) we proved in class (the first is given by v 7→ dv, the second is induced
by the restriction map C∞(U) from to C∞p (U)).
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(d) For X, Y ∈ Der(C∞(U)), define [X, Y ] := X ◦Y −Y ◦X : C∞(U)→ C∞(U). Show that
the linear map [X, Y ] is again a derivation.

(e) Show that for X, Y, Z ∈ Der(C∞(U)) the property

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (0.1)

holds.

Comments. Property (c) shows that a smooth vector field on U can alternatively be
described as a derivation X : C∞(U) → C∞(U). This very abstract definition has two
advantages:

• it immediately generalizes from open subsets of Euclidean space to smooth manifolds.

• It allows the definition of [X, Y ], called the Lie bracket of the vector fields X, Y .

A Lie algebra is a vector space L equipped with a map [ , ] : L×L→ L which is linear in each
slot, which is alternating in the sense that [X, Y ] = −[Y,X], and which satisfies equation
(0.1), called the Jacobi identity. The Lie bracket of smooth vector fields is evidently linear
in each slot and alternating; so the result of part (e) can be summarized by saying that the
vector space of smooth vector fields on a smooth manifold is a Lie algebra with respect to
the Lie bracket of vector fields.

2. (10 points) Let U be an open subset of Rn and let γ : R × U → U be a smooth action
of the group R on U . Let V : U → Rn be the vector field given by V (p) := γ′p(0), where
γp : R→ U is the smooth path given by γp(t) = γ(t, p).

(a) Show that V is a smooth vector field and write the associated derivation DV explicitly
in the form DV =

∑n
i=1 Vi

∂
∂xi

for smooth functions Vi ∈ C∞(U).

(b) Find the explicit formula for the action γ : R × R2 → R2 where γ(t, x, y) is the point
(x, y) ∈ R2 rotated counterclockwise by the angle t.

(c) Calculate the corresponding vector field R = R1(x, y) ∂
∂x

+ R2(x, y) ∂
∂y

, where R1, R2 ∈
C∞(R2).

(d) Give the explicit formula of the action γz : R×R3 → R3, where γz(t, (x, y, z)) describes
the rotation of (x, y, z) ∈ R3 around the z-axis by the angle t. Give an explicit formula
for the corresponding vector field Rz as a linear combination of the vector fields ∂

∂x
, ∂
∂y

and ∂
∂z

whose coefficients are smooth functions on R3. Use symmetry considerations
(cyclic permutation of the x, y, z coordinates) to write down the vector fields Rx and
Ry corresponding to rotation around the x resp. y axis.
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(e) Show that [Rx, Ry] = −Rz, [Ry, Rz] = −Rx and [Rz, Rx] = −Ry. Hint: calculate one of
these bracket relations and deduce the other two by symmetry arguments.

Comments: The vector field V corresponding to an R-action is called the infinitesimal
generator of the action. The group SO(3) is the group of rotations of R3; its Lie algebra
is the 3-dimensional vector space with basis Rx, Ry and Rz and the Lie algebra structure
determined by the Lie brackets determined in part (e).

3. (10 points) Let V and W be real vector spaces with bases {vi}i=1,...,m and {wj}j=1,...,n,
respectively. Using these bases, construct bases for the following vector spaces that can
be constructed from V , W and determine the dimension of these vector spaces. These are
standard constructions; there is no need to verify that the collections of vectors you write
down in fact form a basis. The point of this exercise is to make sure you know these bases.
Feel free to consult the literature to see how this is done.

(a) The dual vector space V ∗ := Hom(V,R) of linear maps f : V → R.

(b) The vector space Hom(V,W ) of linear maps f : V → W .

(c) The vector space Mult(V,W ;R) of multilinear maps (or bilinear, since here f has two
slots) f : V ×W → R, i.e., f(v, w) ∈ R is linear in each slot, that is, f(v, w) is a linear
function of v ∈ V (for fixed w ∈ W ) and f(v, w) is a linear function of w ∈ W (for fixed
v ∈ V ).

(d) The vector space Sym2(V ;R) ⊂ Mult(V, V ;R) of symmetric bilinear maps f : V ×V → R,
i.e., f is a bilinear map which is symmetric in the sense that f(v1, v2) = f(v2, v1) for all
v1, v2 ∈ V .

(e) The vector space Alt2(V ;R) ⊂ Mult(V, V ;R) of alternating bilinear maps f : V ×V → R,
i.e., f is a bilinear map which is alternating in the sense that f(v1, v2) = −f(v2, v1) for
all v1, v2 ∈ V .

(f) The vector space Alt3(V ;R) of alternating multilinear maps f : V × V × V → R, i.e., f
is linear in each slot and is alternating in the sense that

f(vσ(1), vσ(2), vσ(3)) = sign(σ)f(v1, v2, v3)

for all v1, v2, v3 ∈ V and any permutation σ ∈ S3. Here sign(σ) ∈ {±1} is the sign of
the permutation σ.

4. (15 points) The goal of this problem is to prove the following result.
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Lemma 0.2. (Vector Bundle Construction Lemma). Let M be a smooth manifold of
dimension n, and let {Ep} be a collection of vector spaces parametrized by p ∈M . Let E be
the set given by the disjoint union of all these vector spaces, which we write as

E :=
∐
p∈M

Ep = {(p, v) | p ∈M, v ∈ Ep}

and let π : E → M be the projection map defined by π(p, v) = p. Let {Uα}α∈A be an open
cover of M , and let for each α ∈ A, let Φα : π−1(Uα) −→ Uα×Rk be maps with the following
properties

(i) The diagram

E|Uα := π−1(Uα) Uα × Rk

Uα

π

Φα

π1

is commutative, where π1 is the projection onto the first factor.

(ii) For each p ∈ Uα, the restriction of Φα to Ep = π−1(p) is a vector space isomorphism
between Ep and {p} × Rk = Rk (which implies that Φα is a bijection).

(iii) For α, β ∈ A, the composition

(Uα ∩ Uβ)× Rk π−1(Uα ∩ Uβ) (Uα ∩ Uβ)× RkΦ−1
α Φβ

is smooth.

Then the total space E can be equipped with the structure of a smooth manifold of dimension
n+ k such that π : E →M is a smooth vector bundle of rank k with local trivializations Φα.

(a) Construct a topology on E by declaring U ⊂ E to be open if Φα(U ∩ E|Uα) is an open
subset of Uα × Rk for all α ∈ A. Show that this satisfies the conditions for a topology
and that with this topology on E the map Φα is a homeomorphism (for the subspace
topology on E|Uα).

(b) Show that equipped with this topology E is a topological manifold of dimension n + k
(don’t bother to check the technical conditions of being Hausdorff and second countable).
Hint: Let {(Vβ, ψβ)}β∈B be an atlas for M . Show that the bundle chart Φα and the
manifold chart ψβ can be used to construct a chart

χα,β : E ⊃
open

E|Uα∩Vβ −→ Rn+k.
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(c) Show that the charts {(E|Uα∩Vβ), χα,β)} for (α, β) ∈ A×B form a smooth atlas for E.

(d) Show that π : E → M is a smooth vector bundle of rank k with local trivializations
provided by Φα.


