Homework Assignment \# 10, due Nov. 22

1. (15 points) Let $U \subset \mathbb{R}^{n}$ be an open subset. Then the map

$$
\frac{\partial}{\partial x_{i \mid p}}: C_{p}^{\infty}(U) \longrightarrow \mathbb{R}
$$

given by mapping $f \in C_{p}^{\infty}(U)$ to the partial derivative $\frac{\partial f}{\partial x_{i} \mid p}$ at a point p is an element of $T_{p}^{\text {alg }} U=\operatorname{Der}\left(C_{p}^{\infty}(U), \mathbb{R}\right)$; in other words, $\frac{\partial}{\partial x_{i} \mid p}$ is a tangent vector of U at the point $p \in U$ (in the algebraic description of the tangent space).
(a) Show that the map $\mathbb{R}^{n} \rightarrow T_{p}^{\text {alg }} U=\operatorname{Der}\left(C_{p}^{\infty}(U), \mathbb{R}\right)$ given by $v \mapsto \sum_{i=1}^{n} v_{i} \frac{\partial}{\partial x_{i} \mid p}$ agrees with the isomorphism constructed in class (given by $v \mapsto d_{v}$).
(b) Let V be a smooth vector field on U, i.e., V is a smooth map $V: U \rightarrow \mathbb{R}^{n}$ with component functions $V_{i}: U \rightarrow \mathbb{R}$, i.e., $V(p)=\left(V_{1}(p), \ldots, V_{n}(p)\right)$. For $f \in C^{\infty}(U)$, let $D_{V} f \in C^{\infty}(U)$ be the smooth function whose value at $p \in U$ is given by

$$
\left(D_{V} f\right)(p)=\sum_{i=1}^{n} V_{i}(p) \frac{\partial f}{\partial x_{i \mid p}}
$$

Show that the map $D_{V}: C^{\infty}(U) \longrightarrow C^{\infty}(U)$ defined by $f \mapsto D_{V} f$ is a derivation of the algebra $C^{\infty}(U)$, i.e., D_{V} is a linear map with the product rule property

$$
D(f \cdot g)=D_{V}(f) \cdot g+f \cdot D_{V}(g) \quad \text { for } f, g \in C^{\infty}(U)
$$

Terminology and notation: the usual notation is

$$
D_{V}=\sum_{i=1}^{n} V_{i} \frac{\partial}{\partial x_{i}}
$$

Geometrically, $D_{V} f$ is the derivative of the smooth function f in the direction of the vector field V.
(c) Let $C^{\infty}\left(U, \mathbb{R}^{n}\right)$ be the vector space of smooth maps $U \rightarrow \mathbb{R}^{n}$, and let $\operatorname{Der}\left(C^{\infty}(U)\right)$ be the vector space of derivations of the algebra $C^{\infty}(U)$. Show that the map

$$
C^{\infty}\left(U, \mathbb{R}^{n}\right) \rightarrow \operatorname{Der}\left(C^{\infty}(U)\right) \quad \text { given by } \quad V \mapsto D_{V}
$$

is an isomorphism of vector spaces. Hint: use the isomorphisms $\mathbb{R}^{n} \cong \operatorname{Der}\left(C_{p}^{\infty}(U), \mathbb{R}\right) \cong$ $\operatorname{Der}\left(C^{\infty}(U), \mathbb{R}\right.$) we proved in class (the first is given by $v \mapsto d_{v}$, the second is induced by the restriction map $C^{\infty}(U)$ from to $\left.C_{p}^{\infty}(U)\right)$.
(d) For $X, Y \in \operatorname{Der}\left(C^{\infty}(U)\right)$, define $[X, Y]:=X \circ Y-Y \circ X: C^{\infty}(U) \rightarrow C^{\infty}(U)$. Show that the linear map $[X, Y]$ is again a derivation.
(e) Show that for $X, Y, Z \in \operatorname{Der}\left(C^{\infty}(U)\right)$ the property

$$
\begin{equation*}
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \tag{0.1}
\end{equation*}
$$

holds.
Comments. Property (c) shows that a smooth vector field on U can alternatively be described as a derivation $X: C^{\infty}(U) \rightarrow C^{\infty}(U)$. This very abstract definition has two advantages:

- it immediately generalizes from open subsets of Euclidean space to smooth manifolds.
- It allows the definition of $[X, Y]$, called the Lie bracket of the vector fields X, Y.

A Lie algebra is a vector space L equipped with a map [,]: $L \times L \rightarrow L$ which is linear in each slot, which is alternating in the sense that $[X, Y]=-[Y, X]$, and which satisfies equation (0.1), called the Jacobi identity. The Lie bracket of smooth vector fields is evidently linear in each slot and alternating; so the result of part (e) can be summarized by saying that the vector space of smooth vector fields on a smooth manifold is a Lie algebra with respect to the Lie bracket of vector fields.
2. (10 points) Let U be an open subset of \mathbb{R}^{n} and let $\gamma: \mathbb{R} \times U \rightarrow U$ be a smooth action of the group \mathbb{R} on U. Let $V: U \rightarrow \mathbb{R}^{n}$ be the vector field given by $V(p):=\gamma_{p}^{\prime}(0)$, where $\gamma_{p}: \mathbb{R} \rightarrow U$ is the smooth path given by $\gamma_{p}(t)=\gamma(t, p)$.
(a) Show that V is a smooth vector field and write the associated derivation D_{V} explicitly in the form $D_{V}=\sum_{i=1}^{n} V_{i} \frac{\partial}{\partial x_{i}}$ for smooth functions $V_{i} \in C^{\infty}(U)$.
(b) Find the explicit formula for the action $\gamma: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $\gamma(t, x, y)$ is the point $(x, y) \in \mathbb{R}^{2}$ rotated counterclockwise by the angle t.
(c) Calculate the corresponding vector field $R=R_{1}(x, y) \frac{\partial}{\partial x}+R_{2}(x, y) \frac{\partial}{\partial y}$, where $R_{1}, R_{2} \in$ $C^{\infty}\left(\mathbb{R}^{2}\right)$.
(d) Give the explicit formula of the action $\gamma^{z}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, where $\gamma^{z}(t,(x, y, z))$ describes the rotation of $(x, y, z) \in \mathbb{R}^{3}$ around the z-axis by the angle t. Give an explicit formula for the corresponding vector field R^{z} as a linear combination of the vector fields $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$ whose coefficients are smooth functions on \mathbb{R}^{3}. Use symmetry considerations (cyclic permutation of the x, y, z coordinates) to write down the vector fields R^{x} and R^{y} corresponding to rotation around the x resp. y axis.
(e) Show that $\left[R^{x}, R^{y}\right]=-R^{z},\left[R^{y}, R^{z}\right]=-R^{x}$ and $\left[R^{z}, R^{x}\right]=-R^{y}$. Hint: calculate one of these bracket relations and deduce the other two by symmetry arguments.

Comments: The vector field V corresponding to an \mathbb{R}-action is called the infinitesimal generator of the action. The group $S O(3)$ is the group of rotations of \mathbb{R}^{3}; its Lie algebra is the 3 -dimensional vector space with basis R^{x}, R^{y} and R^{z} and the Lie algebra structure determined by the Lie brackets determined in part (e).
3. (10 points) Let V and W be real vector spaces with bases $\left\{v_{i}\right\}_{i=1, \ldots, m}$ and $\left\{w_{j}\right\}_{j=1, \ldots, n}$, respectively. Using these bases, construct bases for the following vector spaces that can be constructed from V, W and determine the dimension of these vector spaces. These are standard constructions; there is no need to verify that the collections of vectors you write down in fact form a basis. The point of this exercise is to make sure you know these bases. Feel free to consult the literature to see how this is done.
(a) The dual vector space $V^{*}:=\operatorname{Hom}(V, \mathbb{R})$ of linear maps $f: V \rightarrow \mathbb{R}$.
(b) The vector space $\operatorname{Hom}(V, W)$ of linear maps $f: V \rightarrow W$.
(c) The vector space $\operatorname{Mult}(V, W ; \mathbb{R})$ of multilinear maps (or bilinear, since here f has two slots) $f: V \times W \rightarrow \mathbb{R}$, i.e., $f(v, w) \in \mathbb{R}$ is linear in each slot, that is, $f(v, w)$ is a linear function of $v \in V$ (for fixed $w \in W$) and $f(v, w)$ is a linear function of $w \in W$ (for fixed $v \in V)$.
(d) The vector space $\operatorname{Sym}^{2}(V ; \mathbb{R}) \subset \operatorname{Mult}(V, V ; \mathbb{R})$ of symmetric bilinear maps $f: V \times V \rightarrow \mathbb{R}$, i.e., f is a bilinear map which is symmetric in the sense that $f\left(v_{1}, v_{2}\right)=f\left(v_{2}, v_{1}\right)$ for all $v_{1}, v_{2} \in V$.
(e) The vector space $\operatorname{Alt}^{2}(V ; \mathbb{R}) \subset \operatorname{Mult}(V, V ; \mathbb{R})$ of alternating bilinear maps $f: V \times V \rightarrow \mathbb{R}$, i.e., f is a bilinear map which is alternating in the sense that $f\left(v_{1}, v_{2}\right)=-f\left(v_{2}, v_{1}\right)$ for all $v_{1}, v_{2} \in V$.
(f) The vector space $\operatorname{Alt}^{3}(V ; \mathbb{R})$ of alternating multilinear maps $f: V \times V \times V \rightarrow \mathbb{R}$, i.e., f is linear in each slot and is alternating in the sense that

$$
f\left(v_{\sigma(1)}, v_{\sigma(2)}, v_{\sigma(3)}\right)=\operatorname{sign}(\sigma) f\left(v_{1}, v_{2}, v_{3}\right)
$$

for all $v_{1}, v_{2}, v_{3} \in V$ and any permutation $\sigma \in S_{3}$. Here $\operatorname{sign}(\sigma) \in\{ \pm 1\}$ is the sign of the permutation σ.
4. (15 points) The goal of this problem is to prove the following result.

Lemma 0.2. (Vector Bundle Construction Lemma). Let M be a smooth manifold of dimension n, and let $\left\{E_{p}\right\}$ be a collection of vector spaces parametrized by $p \in M$. Let E be the set given by the disjoint union of all these vector spaces, which we write as

$$
E:=\coprod_{p \in M} E_{p}=\left\{(p, v) \mid p \in M, v \in E_{p}\right\}
$$

and let $\pi: E \rightarrow M$ be the projection map defined by $\pi(p, v)=p$. Let $\left\{U_{\alpha}\right\}_{\alpha \in A}$ be an open cover of M, and let for each $\alpha \in A$, let $\Phi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \longrightarrow U_{\alpha} \times \mathbb{R}^{k}$ be maps with the following properties
(i) The diagram

is commutative, where π_{1} is the projection onto the first factor.
(ii) For each $p \in U_{\alpha}$, the restriction of Φ_{α} to $E_{p}=\pi^{-1}(p)$ is a vector space isomorphism between E_{p} and $\{p\} \times \mathbb{R}^{k}=\mathbb{R}^{k}$ (which implies that Φ_{α} is a bijection).
(iii) For $\alpha, \beta \in A$, the composition

$$
\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{k} \xrightarrow{\Phi_{\alpha}^{-1}} \pi^{-1}\left(U_{\alpha} \cap U_{\beta}\right) \xrightarrow{\Phi_{\beta}}\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{k}
$$

is smooth.
Then the total space E can be equipped with the structure of a smooth manifold of dimension $n+k$ such that $\pi: E \rightarrow M$ is a smooth vector bundle of rank k with local trivializations Φ_{α}.
(a) Construct a topology on E by declaring $U \subset E$ to be open if $\Phi_{\alpha}\left(U \cap E_{\mid U_{\alpha}}\right)$ is an open subset of $U_{\alpha} \times \mathbb{R}^{k}$ for all $\alpha \in A$. Show that this satisfies the conditions for a topology and that with this topology on E the map Φ_{α} is a homeomorphism (for the subspace topology on $\left.E_{\mid U_{\alpha}}\right)$.
(b) Show that equipped with this topology E is a topological manifold of dimension $n+k$ (don't bother to check the technical conditions of being Hausdorff and second countable). Hint: Let $\left\{\left(V_{\beta}, \psi_{\beta}\right)\right\}_{\beta \in B}$ be an atlas for M. Show that the bundle chart Φ_{α} and the manifold chart ψ_{β} can be used to construct a chart

$$
\chi_{\alpha, \beta}: E \underset{\text { open }}{\supset} E_{\mid U_{\alpha} \cap V_{\beta}} \longrightarrow \mathbb{R}^{n+k} .
$$

(c) Show that the charts $\left.\left\{\left(E_{\mid U_{\alpha} \cap V_{\beta}}\right), \chi_{\alpha, \beta}\right)\right\}$ for $(\alpha, \beta) \in A \times B$ form a smooth atlas for E.
(d) Show that $\pi: E \rightarrow M$ is a smooth vector bundle of rank k with local trivializations provided by Φ_{α}.

