Homework Assignment # 11, due Dec. 6

1. (10 points) For a smooth manifold M, the category $\operatorname{Vect}(M)$ of smooth vector bundles over M is defined as follows.

- The objects of $\mathcal{V}ect(M)$ are the smooth vector bundles over M.
- For smooth vector bundles E, F over M, a morphism $f: E \to F$, called a vector bundle morphism is a smooth map $f: E \to F$ with commutes with the projection maps to M and whose restriction $f_p: E_p \to F_p$ to each fiber E_p is a linear map.

The identity map id_E of a vector bundle E is a vector bundle morphism, and the composition of two vector bundle morphisms is again a vector bundle morphism. Hence this is indeed a category. The goal of this exercise is to prove a simple criterion for a vector bundle morphism $f: E \to F$ to be an isomorphism in $\mathcal{V}ect(M)$.

- (a) Show that the map $GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ given by $A \mapsto A^{-1}$ is smooth.
- (b) Show that a vector bundle morphism $f: E \to F$ is an isomorphism in the category $\operatorname{Vect}(M)$ if and only if $f_p: E_p \to F_p$ is an isomorphism of vector spaces for every $p \in M$. Hint: The issue is to prove smoothness of the inverse of the vector bundle map f. Smoothness is a *local property*, making it possible to check smoothness using local trivializations.

2. (10 points) We recall that the projective space \mathbb{RP}^n is a smooth manifold of dimension n whose underlying set is the set of 1-dimensional subspaces of \mathbb{R}^{n+1} . In particular, each point $p \in \mathbb{RP}^n$ determines tautologically a 1-dimensional subspace $E_p \subset \mathbb{R}^{n+1}$. Let E be the disjoint union $E = \prod_{p \in \mathbb{RP}^n} E_p$ of the vector spaces E_p . More explicitly,

$$E = \{ ([x], v) \mid [x] \in \mathbb{RP}^n, v \in \langle x \rangle \},\$$

where $x \in \mathbb{R}^{n+1} \setminus \{0\}$, $\langle x \rangle \subset \mathbb{R}^{n+1}$ is the one-dimensional subspace spanned by x, and $[x] \in \mathbb{RP}^n$ is the corresponding point in the projective space.

- (a) Use the Vector Bundle Construction Lemma to show that E is a smooth vector bundle of rank 1 over \mathbb{RP}^n (which is called the *tautological line bundle over* \mathbb{RP}^n ; *line bundle* is a synonym for vector bundle of rank 1). Hint: Construct local trivializations of Erestricted to $U_i = \{ [x_0, \ldots, x_n] \in \mathbb{RP}^n \mid x_i \neq 0 \}$.
- (b) Show that the complement of the zero section in E is diffeomorphic to $\mathbb{R}^{n+1} \setminus \{0\}$.

3. (10 points) For any smooth manifold M the *de Rham differential* (also called *exterior differential*) is the unique map $d: \Omega^k(M) \to \Omega^{k+1}(M)$ with the following properties:

- (i) d is linear.
- (ii) For a function $f \in C^{\infty}(M) = \Omega^{0}(M)$ the 1-form $df \in \Omega^{1}(M) = C^{\infty}(M, T^{*}M)$ is the usual differential of f.
- (iii) d is a graded derivation with respect to the wedge product; i.e.,

$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^k \omega \wedge d\eta \quad \text{for } \omega \in \Omega^k(M), \, \eta \in \Omega^l(M).$$

(iv) $d^2 = 0$.

Show that for $M = \mathbb{R}^n$ the de Rham differential of the k-form

$$\omega = f dx^{i_1} \wedge \dots \wedge dx^{i_k} \quad \text{for } f \in C^{\infty}(\mathbb{R}^n), \, i_1 < i_2 < \dots < i_k$$

is given explicitly by the formula

$$d\omega = \sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}} dx^{j} \wedge dx^{i_{1}} \wedge \dots \wedge dx^{i_{k}}.$$

We note that every k-form $\eta \in \Omega^k(\mathbb{R}^n)$ can be written uniquely in the form

$$\eta = \sum_{i_1 < \dots < i_k} f_{i_1, \dots, i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$$

for smooth functions $f_{i_1,\ldots,i_k} \in C^{\infty}(\mathbb{R}^n)$.

4. (10 points) Let M, N be smooth manifolds and $F: M \to N$ a smooth map. Then a differential form $\omega \in \Omega^k(N)$ leads to a form $F^*\omega \in \Omega^k(M)$, called the *pullback of* ω along F which is defined by

$$(F^*\omega)_p(v_1,\ldots,v_k) := \omega_p(F_*v_1,\ldots,F_*v_k) \quad \text{for } p \in M, \, v_1,\ldots,v_k \in T_pM$$

In more detail: the k-form $F^*\omega$ is a section of the vector bundle $\operatorname{Alt}^k(TM;\mathbb{R})$, and hence it can be evaluated at $p \in M$ to obtain an element $(F^*\omega)_p$ in the fiber of that vector bundle over p, which is $\operatorname{Alt}^k(T_pM;\mathbb{R})$. In other words, $(F^*\omega)_p$ is an alternating multilinear map

$$(F^*\omega)_p \colon \underbrace{T_p M \times \cdots \times T_p M}_k \longrightarrow \mathbb{R},$$

and hence it can be evaluated on the k tangent vectors $v_1, \ldots, v_k \in T_p M$ to obtain a real number $(F^*\omega)_p(v_1, \ldots, v_k)$. On the right hand side to the equation defining $F^*\omega$, the map $F_*: T_p M \to T_{F(p)} N$ is the differential of F. Hence the alternating multilinear map $\omega_{F(p)} \in \operatorname{Alt}^k(T_{F(p)}N;\mathbb{R})$ can be evaluated on F_*v_1,\ldots,F_*v_k to obtain the real number $\omega_p(F_*v_1,\ldots,F_*v_k)$.

Let $F \colon \mathbb{R}^n \to \mathbb{R}^n$ be a smooth map. Show that

$$F^*(dx^1 \wedge \dots \wedge dx^n) = \det(dF_x) \ dx^1 \wedge \dots \wedge dx^n$$

Here $dF_x \colon \mathbb{R}^n \to \mathbb{R}^n$ is the differential of F at the point $x \in \mathbb{R}^n$.

5. (10 points) Show that the exterior derivative for differential forms on \mathbb{R}^3 corresponds to the classical operations of *gradient* resp. *curl* resp. *divergence*. More precisely, show that there is a commutative diagram

$$\begin{array}{ccc} C^{\infty}(\mathbb{R}^{3}) & \xrightarrow{\operatorname{grad}} & \operatorname{\mathcal{V}ect}(\mathbb{R}^{3}) & \xrightarrow{\operatorname{curl}} & \operatorname{\mathcal{V}ect}(\mathbb{R}^{3}) & \xrightarrow{\operatorname{div}} & C^{\infty}(\mathbb{R}^{3}) \\ & & & \downarrow \cong & & \downarrow \cong & & \downarrow \cong \\ & & \Omega^{0}(\mathbb{R}^{3}) & \xrightarrow{d} & \Omega^{1}(\mathbb{R}^{3}) & \xrightarrow{d} & \Omega^{2}(\mathbb{R}^{3}) & \xrightarrow{d} & \Omega^{3}(\mathbb{R}^{3}) \end{array}$$

Here $\operatorname{Vect}(\mathbb{R}^3)$ is the space of vector fields on \mathbb{R}^3 , and we recall that grad, curl and divergence are given by the formulas

$$\operatorname{grad}(f) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$
$$\operatorname{curl}(f_1, f_2, f_3) = \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}, \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right)$$
$$\operatorname{div}(f_1, f_2, f_3) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

Here we identify a vector field on \mathbb{R}^3 with a triple (f_1, f_2, f_3) of smooth functions on \mathbb{R}^3 . The vertical isomorphisms are given by

$$(f_1, f_2, f_3) \mapsto f_1 dx + f_2 dy + f_3 dz$$

$$(f_1, f_2, f_3) \mapsto f_1 dy \wedge dz + f_2 dz \wedge dx + f_3 dx \wedge dy$$

$$f \mapsto f dx \wedge dy \wedge dz$$