Homework Assignment \# 11, due Dec. 6

1. (10 points) For a smooth manifold M, the category $\mathcal{V e c t}(M)$ of smooth vector bundles over M is defined as follows.

- The objects of $\mathcal{V e c t}(M)$ are the smooth vector bundles over M.
- For smooth vector bundles E, F over M, a morphism $f: E \rightarrow F$, called a vector bundle morphism is a smooth map $f: E \rightarrow F$ with commutes with the projection maps to M and whose restriction $f_{p}: E_{p} \rightarrow F_{p}$ to each fiber E_{p} is a linear map.

The identity map id_{E} of a vector bundle E is a vector bundle morphism, and the composition of two vector bundle morphisms is again a vector bundle morphism. Hence this is indeed a category. The goal of this exercise is to prove a simple criterion for a vector bundle morphism $f: E \rightarrow F$ to be an isomorphism in $\operatorname{Vect}(M)$.
(a) Show that the map $G L_{n}(\mathbb{R}) \rightarrow G L_{n}(\mathbb{R})$ given by $A \mapsto A^{-1}$ is smooth.
(b) Show that a vector bundle morphism $f: E \rightarrow F$ is an isomorphism in the category $\mathcal{V e c t}(M)$ if and only if $f_{p}: E_{p} \rightarrow F_{p}$ is an isomorphism of vector spaces for every $p \in$ M. Hint: The issue is to prove smoothness of the inverse of the vector bundle map f. Smoothness is a local property, making it possible to check smoothness using local trivializations.
2. (10 points) We recall that the projective space $\mathbb{R}^{\mathbb{P}^{n}}$ is a smooth manifold of dimension n whose underlying set is the set of 1 -dimensional subspaces of \mathbb{R}^{n+1}. In particular, each point $p \in \mathbb{R} \mathbb{P}^{n}$ determines tautologically a 1-dimensional subspace $E_{p} \subset \mathbb{R}^{n+1}$. Let E be the disjoint union $E=\amalg_{p \in \mathbb{R}^{n}} E_{p}$ of the vector spaces E_{p}. More explicitly,

$$
E=\left\{([x], v) \mid[x] \in \mathbb{R}^{n}, v \in\langle x\rangle\right\}
$$

where $x \in \mathbb{R}^{n+1} \backslash\{0\},\langle x\rangle \subset \mathbb{R}^{n+1}$ is the one-dimensional subspace spanned by x, and $[x] \in \mathbb{R} \mathbb{P}^{n}$ is the corresponding point in the projective space.
(a) Use the Vector Bundle Construction Lemma to show that E is a smooth vector bundle of rank 1 over $\mathbb{R}^{p}{ }^{n}$ (which is called the tautological line bundle over \mathbb{R}^{p}; line bundle is a synonym for vector bundle of rank 1). Hint: Construct local trivializations of E restricted to $U_{i}=\left\{\left[x_{0}, \ldots, x_{n}\right] \in \mathbb{R} \mathbb{P}^{n} \mid x_{i} \neq 0\right\}$.
(b) Show that the complement of the zero section in E is diffeomorphic to $\mathbb{R}^{n+1} \backslash\{0\}$.
3. (10 points) For any smooth manifold M the de Rham differential (also called exterior differential) is the unique map $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ with the following properties:
(i) d is linear.
(ii) For a function $f \in C^{\infty}(M)=\Omega^{0}(M)$ the 1-form $d f \in \Omega^{1}(M)=C^{\infty}\left(M, T^{*} M\right)$ is the usual differential of f.
(iii) d is a graded derivation with respect to the wedge product; i.e.,

$$
d(\omega \wedge \eta)=(d \omega) \wedge \eta+(-1)^{k} \omega \wedge d \eta \quad \text { for } \omega \in \Omega^{k}(M), \eta \in \Omega^{l}(M)
$$

(iv) $d^{2}=0$.

Show that for $M=\mathbb{R}^{n}$ the de Rham differential of the k-form

$$
\omega=f d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \quad \text { for } f \in C^{\infty}\left(\mathbb{R}^{n}\right), i_{1}<i_{2}<\cdots<i_{k}
$$

is given explicitly by the formula

$$
d \omega=\sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}} d x^{j} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

We note that every k-form $\eta \in \Omega^{k}\left(\mathbb{R}^{n}\right)$ can be written uniquely in the form

$$
\eta=\sum_{i_{1}<\cdots<i_{k}} f_{i_{1}, \ldots, i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

for smooth functions $f_{i_{1}, \ldots, i_{k}} \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
4. (10 points) Let M, N be smooth manifolds and $F: M \rightarrow N$ a smooth map. Then a differential form $\omega \in \Omega^{k}(N)$ leads to a form $F^{*} \omega \in \Omega^{k}(M)$, called the pullback of ω along F which is defined by

$$
\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right):=\omega_{p}\left(F_{*} v_{1}, \ldots, F_{*} v_{k}\right) \quad \text { for } p \in M, v_{1}, \ldots, v_{k} \in T_{p} M
$$

In more detail: the k-form $F^{*} \omega$ is a section of the vector bundle $\operatorname{Alt}^{k}(T M ; \mathbb{R})$, and hence it can be evaluated at $p \in M$ to obtain an element $\left(F^{*} \omega\right)_{p}$ in the fiber of that vector bundle over p, which is $\operatorname{Alt}^{k}\left(T_{p} M ; \mathbb{R}\right)$. In other words, $\left(F^{*} \omega\right)_{p}$ is an alternating multilinear map

$$
\left(F^{*} \omega\right)_{p}: \underbrace{T_{p} M \times \cdots \times T_{p} M}_{k} \longrightarrow \mathbb{R},
$$

and hence it can be evaluated on the k tangent vectors $v_{1}, \ldots, v_{k} \in T_{p} M$ to obtain a real number $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right)$. On the right hand side to the equation defining $F^{*} \omega$, the map $F_{*}: T_{p} M \rightarrow T_{F(p)} N$ is the differential of F. Hence the alternating multilinear
$\operatorname{map} \omega_{F(p)} \in \operatorname{Alt}^{k}\left(T_{F(p)} N ; \mathbb{R}\right)$ can be evaluated on $F_{*} v_{1}, \ldots, F_{*} v_{k}$ to obtain the real number $\omega_{p}\left(F_{*} v_{1}, \ldots, F_{*} v_{k}\right)$.

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth map. Show that

$$
F^{*}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right)=\operatorname{det}\left(d F_{x}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

Here $d F_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the differential of F at the point $x \in \mathbb{R}^{n}$.
5. (10 points) Show that the exterior derivative for differential forms on \mathbb{R}^{3} corresponds to the classical operations of gradient resp. curl resp. divergence. More precisely, show that there is a commutative diagram

Here $\mathcal{V e c t}\left(\mathbb{R}^{3}\right)$ is the space of vector fields on \mathbb{R}^{3}, and we recall that grad, curl and divergence are given by the formulas

$$
\begin{aligned}
\operatorname{grad}(f) & =\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \\
\operatorname{curl}\left(f_{1}, f_{2}, f_{3}\right) & =\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}, \frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}, \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \\
\operatorname{div}\left(f_{1}, f_{2}, f_{3}\right) & =\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}
\end{aligned}
$$

Here we identify a vector field on \mathbb{R}^{3} with a triple $\left(f_{1}, f_{2}, f_{3}\right)$ of smooth functions on \mathbb{R}^{3}. The vertical isomorphisms are given by

$$
\begin{aligned}
& \left(f_{1}, f_{2}, f_{3}\right) \mapsto f_{1} d x+f_{2} d y+f_{3} d z \\
& \left(f_{1}, f_{2}, f_{3}\right) \mapsto f_{1} d y \wedge d z+f_{2} d z \wedge d x+f_{3} d x \wedge d y \\
& f \mapsto f d x \wedge d y \wedge d z
\end{aligned}
$$

