Homework Assignment \# 4, due Sept. 27

1. (10 points) Let Σ, Σ^{\prime} be compact connected 2-manifolds. Show that the Euler characteristic of the connected sum $\Sigma \# \Sigma^{\prime}$ is given by the following formula:

$$
\chi\left(\Sigma \# \Sigma^{\prime}\right)=\chi(\Sigma)+\chi\left(\Sigma^{\prime}\right)-2 .
$$

Do not use the Classification Theorem for 2-manifolds or the fact that every compact connected 2-manifold has a combinatorial description as a polygon with edge identifications.

Warning: change of convention for concatenation! I've changed my mind about the order of paths when concatenating path: from now on I plan to conform with the convention Hatcher uses. My motivation is this: in english we write from left to right; so if we want to think of paths as letters, and their concatenations as words (which is the key point of problem \#5), then is much more natural to read concatenations from left to right. In other words, if α, β are paths in X with $\alpha(1)=\beta(0)$, then $\alpha * \beta$ is the path obtained by first running through α, then β.
2. (10 points) Let $\alpha, \beta, \gamma: I \rightarrow X$ be paths in a topological space X. Assume that $\alpha(1)=$ $\beta(0)$ and $\beta(1)=\gamma(0)$ which guarantees that the concatenated paths $\alpha *(\beta * \gamma)$ and $(\alpha * \beta) * \gamma$ can be formed. Show that these two paths are homotopic (relative endpoints). Verifying this shows that if α, β, γ are loops based at $x_{0} \in X$ representing elements $a=[\alpha], b=[\beta], c=[\gamma]$ in $\pi_{1}\left(X ; x_{0}\right)$, then $a(b c)=(a b) c$. In other words, this proves associativity of multiplication in $\pi_{1}\left(X ; x_{0}\right)$, one of the last things to verify in order to prove that $\pi_{1}\left(X ; x_{0}\right)$ is indeed a group.

Hint: Show that both paths can be written as a composition

$$
I \xrightarrow{\phi}[0,3] \xrightarrow{\alpha \widehat{\beta} \beta \widehat{*} \gamma} X \quad \text { with } \quad(\alpha \widehat{*} \beta \widehat{*} \gamma)(s):= \begin{cases}\alpha(s) & 0 \leq s \leq 1 \\ \beta(s-1) & 1 \leq s \leq 2 \\ \gamma(s-2) & 2 \leq s \leq 3\end{cases}
$$

3. (10 points) Let X be a topological space and let β be a path from x_{0} to x_{1}. Show that the map

$$
\Phi_{\beta}: \pi_{1}\left(X, x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{1}\right) \quad[\gamma] \mapsto[\bar{\beta} * \gamma * \beta]
$$

is an isomorphism of groups. In particular, the isomorphism class of the fundamental group $\pi\left(X, x_{0}\right)$ of a path connected space does not depend on the choice of the base point $x_{0} \in X$. Hint: for any path γ in X, there are homotopies

$$
\gamma * \bar{\gamma} \simeq c_{\gamma(0)} \quad \bar{\gamma} * \gamma \simeq c_{\gamma(1)} \quad c_{\gamma(0)} * \gamma \simeq \gamma, \quad \gamma * c_{\gamma(1)} \simeq \gamma
$$

where c_{x} for $x \in X$ denotes the constant path at x. Make use of these (we proved one of these in class; no need to prove the others).
4. (10 points) Let $\left(X, x_{0}\right),\left(Y, y_{0}\right)$ be pointed topological spaces. Show that $\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$ is isomorphic to the Cartesian product $\pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right)$ of the fundamental groups of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$.
5. (10 points) We recall that the torus T and the Klein bottle K can both be described as quotient spaces of the square by identifying the α_{1} edge with the α_{2} edge, and the β_{1} edge with the β_{2} edge as shown in the following pictures.

The edges of the square can be interpreted as paths in the square, which project to a based loops $p \circ \alpha_{1}=p \circ \alpha_{2}$ and $p \circ \beta_{1}=p \circ \beta_{2}$ in the quotient space T resp. K. Here the base point x_{0} of the quotient space is the projection of each of the four vertices of the square. Let $a:=\left[p \circ \alpha_{i}\right]$ and $b:=\left[p \circ \beta_{i}\right]$ be the elements in the fundamental group of T (resp. K) represented by these loops. Prove the following identities:

$$
a b a^{-1} b^{-1}=1 \in \pi_{1}\left(T, x_{0}\right) \quad a b a^{-1} b=1 \in \pi_{1}\left(K, x_{0}\right) .
$$

Observe that $T=\Sigma\left(a b a^{-1} b^{-1}\right)$ and $K=\Sigma\left(a b a^{-1} b\right)$. Further question to think about: does this generalize to a statement for all quotients of a polygon described by a word?
Remarks that might be useful for problems \#4 and \#5. Let $f: X \rightarrow Y$ be a continuous map. If $\gamma: I \rightarrow X$ is a path in X, then f can be used to produce a path $f \circ \gamma: I \rightarrow Y$ in Y. This is useful in \# 4 by using a projection map from $X \times Y$ to one of the factors to build from a loop in $X \times Y$ a loop in that factor. In $\# 5$ it can be applied to the projection map p from the square $[0,1] \times[0,1]$ to the torus (or the Klein bottle) in order to construct paths in T (or K) from paths in $[0,1] \times[0,1]$.

It is helpful to know (and easy to prove) that this construction is compatible with homotopy and concatenation in the following sense. Let $f: X \rightarrow Y$ be continuous map and let $\gamma, \delta: I \rightarrow X$ be paths in X.

- Compatibility with homotopy. If γ, δ have the same starting/end point and are homotopic (relative endpoints), then the paths $f \circ \gamma, f \circ \delta$ have the same starting/end point and are homotopic (relative endpoints).
- Compatibility with concatenation. If $\gamma(1)=\delta(0)$, which assures that the concatenation $\gamma * \delta$ exist, then also the concatenation $(f \circ \gamma) *(f \circ \delta)$ exists and

$$
(f \circ \gamma) *(f \circ \delta)=f \circ(\gamma * \delta)
$$

