Homework Assignment \# 6, due Oct. 11

1. (10 points) Show that the following five topological spaces are all homotopy equivalent:
2. the circle S^{1},
3. the open cylinder $S^{1} \times \mathbb{R}$,
4. the annulus $A=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 2\right\}$,
5. the solid torus $S^{1} \times D^{2}$,
6. the Möbius strip

Hint: show that each of the spaces (2)-(5) contains a subspace S homeomorphic to the circle S^{1} which is a deformation retract of the bigger space it is contained in.
2. (10 points) Identify the pushout of the diagram of topological spaces

where both maps are the standard inclusion maps. In other words, show that the pushout of this diagram is homeomorphic to a well-known topological space X. Hint: It suffices to construct maps $i_{1}, i_{2}: D^{n} \rightarrow X$ to your candidate space X, and to show that the resulting diagram

is a pushout diagram (i.e., it is commutative and satisfies the universal property of a pushout diagram).
3. (10 points) Use the Seifert van Kampen Theorem to show $\pi_{1}\left(S^{n}, x_{0}\right)=\{1\}$ for $n \geq 2$. Hint: Use without proof the fact that the stereographic projection gives a homeomorphism

$$
f: S^{n} \backslash\{N\} \xrightarrow{\approx} \mathbb{R}^{n},
$$

where $N:=(0, \ldots, 0,1) \in S^{n} \subset \mathbb{R}^{n+1}$ is the "north pole" of the n-sphere. Explicitly, f maps a point $x \in S^{n} \backslash N$ to the unique intersection point of the straight line through the points N and x with the subspace $\mathbb{R}^{n} \subset \mathbb{R}^{n+1}$ (draw a picture for $n=2$). Make sure to verify that the hypotheses of the Seifert van Kampen Theorem are satisfied in the situation you apply it to.
4. (10 points) Let X be the subspace of \mathbb{R}^{3} given by the union of the 2 -sphere S^{2} and the segment S of the x-axis given by $S=\left\{(t, 0,0) \in \mathbb{R}^{3} \mid-1 \leq t \leq 1\right\}$. Calculate the fundamental group of X. Hint: use the Seifert van Kampen Theorem.
5. (10 points) Let G be a group. The abelianization of G, is the abelian group $G^{\text {ab }}$ obtained as the quotient of G modulo the commutator subgroup $[G, G]$, the normal subgroup generated by all commutators $[g, h]:=g h g^{-1} h^{-1}$ for $g, h \in G$.
(a) Show that the abelianization of the free group $\langle S\rangle$ generated by a set $S=\left\{s_{1}, \ldots, s_{k}\right\}$ is the free abelian group

$$
\mathbb{Z}[S]:=\mathbb{Z} s_{1} \oplus \cdots \oplus \mathbb{Z} s_{k}
$$

whose elements are the linear combinations $\sum_{i=1}^{k} n_{i} s_{i}$ of the elements of S with coefficients $n_{i} \in \mathbb{Z}$ (the group structure is given by the evident sum of such linear combinations). More precisely, show that an isomorphism

$$
\Psi:\langle S\rangle^{\mathrm{ab}} \longrightarrow \mathbb{Z}[S]
$$

is given by sending a word W in the letters s_{i}, s_{i}^{-1} to the linear combination $\sum_{i=1}^{k} n_{i} s_{i}$, where

$$
n_{i}=\#\left\{\text { occurrences of } s_{i} \text { in } W\right\} \quad-\quad \#\left\{\text { occurrences of } s_{i}^{-1} \text { in } W\right\} .
$$

(b) Let R_{1}, \ldots, R_{k} be elements of the free group $\langle S\rangle$, and let $\left\langle S \mid R_{1}, \ldots, R_{k}\right\rangle$ be the quotient group of $\langle S\rangle$ modulo the normal subgroup generated by the elements R_{1}, \ldots, R_{k}. Show that the there is an isomorphism

$$
\left\langle S \mid R_{1}, \ldots, R_{k}\right\rangle^{\mathrm{ab}} \cong \mathbb{Z}[S] /\left(\Psi\left(R_{1}\right), \ldots, \Psi\left(R_{k}\right)\right)
$$

where $\left(\Psi\left(R_{1}\right), \ldots, \Psi\left(R_{k}\right)\right) \subset \mathbb{Z}[S]$ is the subgroup generated by $\Psi\left(R_{1}\right), \ldots, \Psi\left(R_{k}\right)$.
(c) Show that $\pi_{1}\left(\Sigma_{g}\right)^{\mathrm{ab}} \cong \mathbb{Z}^{2 g}$. Hint: recall that

$$
\pi_{1}\left(\Sigma_{g}\right) \cong\left\langle a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g} \mid \prod_{i=1}^{g}\left[a_{i}, b_{i}\right]\right\rangle
$$

where $\left[a_{i}, b_{i}\right]=a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}$ is the commutator.
(d) Show that $\pi_{1}(\underbrace{\mathbb{R P}^{2} \# \ldots \# \mathbb{R} \mathbb{P}^{2}}_{k})^{\mathrm{ab}} \cong \mathbb{Z}^{k-1} \oplus \mathbb{Z} / 2$. Hint: recall that

$$
\pi_{1}(\underbrace{\mathbb{R P}^{2} \# \ldots \# \mathbb{R} \mathbb{P}^{2}}_{k}) \cong\left\langle a_{1}, \ldots, a_{k} \mid a_{1} a_{1} a_{2} a_{2} \ldots a_{k} a_{k}\right\rangle
$$

It will be convenient to use the basis of $\mathbb{Z} a_{1} \oplus \cdots \oplus \mathbb{Z} a_{k}$ provided by $a_{1}, \ldots, a_{k-1}, c$, where $c=a_{1}+\cdots+a_{k}$.

Remark. In general it is very difficult to determine whether two groups G, G^{\prime} are isomorphic. By contrast, this is easy to determine for finitely generated abelian groups, since by the Fundamental Theorem of finitely generated abelian groups such a group G is isomorphic to the direct product of the infinite cyclic group \mathbb{Z} and finite cyclic groups $\mathbb{Z} / q=\mathbb{Z} / q \mathbb{Z}$ whose order q is a prime power. Moreover, two finitely generated abelian groups are isomorphic if and only if their direct sum decomposition contains the same number of summands of order q for any prime power q and $q=\infty$. Hence the simplest way to show that two groups (e.g., the fundamental groups of topological spaces X, X^{\prime}) are not isomorphic, is to show that their abelianizations are not isomorphic.

