Homework Assignment \# 7, due Nov. 1

1. (10 points) Let M, N be path-connected manifolds of dimension $n \geq 3$. The goal of this problem is to compute the fundamental group of their connected sum $M \# N$ in terms of the fundamental groups of M and N. We recall that for the construction of the connected sum we picked points $x_{0} \in M, y_{0} \in N$ and maps $\phi: B_{2}^{n} \rightarrow M, \psi: B_{2}^{n} \rightarrow N$ which are are homeomorphisms onto their image with $\phi(0)=x_{0}, \psi(0)=y_{0}$; here $B_{2}^{n}=\left\{v \in \mathbb{R}^{n} \mid\|v\|<\right.$ $2\} \subset \mathbb{R}^{n}$ is the open ball of radius 2 . Then we defined

$$
M \# N:=\left(M \backslash \phi\left(B_{1}^{n}\right) \amalg N \backslash \psi\left(B_{1}^{n}\right)\right) / \sim
$$

where the equivalence relation is given by identifying for $v \in S^{n-1}$ the point $\phi(v) \in M \backslash \phi\left(B_{1}^{n}\right)$ with the point $\left.\psi(v) \in N \backslash \psi\left(B_{1}^{n}\right)\right)$.

For the problem at hand, as well as for defining the connected sum for smooth manifolds, a modification of the definition of the connected sum is convenient. Let

$$
\alpha: S^{n-1} \times(-1,1) \xrightarrow{\approx} B_{2}^{n} \backslash\{0\} \quad \text { be given by } \quad(v, t) \mapsto(1-t) v .
$$

This is a homeomorphism with inverse given by $B_{2}^{n} \backslash\{0\} \ni w \mapsto(w /\|w\|, 1-\|w\|)$. Let

$$
M \widetilde{\#} N:=\left(M \backslash\left\{x_{0}\right\} \amalg N \backslash\left\{y_{0}\right\}\right) / \sim,
$$

where the equivalence relation identifies $\phi(\alpha(v,-t))$ and $\psi(\alpha(v, t))$ for $(v, t) \in S^{n-1} \times(-1,1)$ (warning: $M \widetilde{\#} N$ is just an ad hoc notation).
(a) Show that $M \widetilde{\#} N$ is homeomorphic to $M \# N$. Hint: it might be helpful to draw a picture of $M \widetilde{\#} N$, indicating the image of $\phi\left(B_{2}^{n} \backslash\{0\}\right)=\psi\left(B_{2}^{n} \backslash\{0\}\right)$.
(b) How are the fundamental groups of M and $M \backslash\left\{x_{0}\right\}$ related? Hint: Use the Seifert van Kampen Theorem.
(c) Express the fundamental group of $M \# N$ in terms of the fundamental groups of $M \backslash\left\{x_{0}\right\}$ and $N \backslash\left\{y_{0}\right\}$.
2. (10 points)
(a) Show that the projection map $p: S^{n} \rightarrow \mathbb{R P}^{n}$ is a double covering.
(b) Calculate the fundamental group of $\mathbb{R P}^{n}$ for $n \geq 2$. Hint: use part (a).
3. (10 points) Let $p:\left(\widetilde{X}, \widetilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering map. Let Y be a path-connected and let $f:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right.$ be a map such that the image $f_{*} \pi_{1}\left(Y, y_{0}\right)$ is contained in the image
$p_{*} \pi_{1}\left(\widetilde{X}, \widetilde{x}_{0}\right)$. We proved in class that then there exists a unique (not necessarily continuous) map \tilde{f} making the diagram

commutative. We constructed $\tilde{f}(y)$ by picking a path $\gamma: I \rightarrow Y$ from y_{0} to y, composed with the map $f: Y \rightarrow X$ to obtain the path $f \gamma: I \rightarrow X$, and defined $\widetilde{f}(y):=\widetilde{f \gamma}(1)$, where $\widetilde{f \gamma}: I \rightarrow \widetilde{X}$ is the unique lift of $f \gamma$ with starting point \widetilde{x}_{0}.
Show that \tilde{f} is continuous under the additional assumption that Y is locally path-connected. Hint: It suffices to show that \widetilde{f} is continuous in some open neighborhood V of every point $y \in Y$. Show that the assumption that Y is locally path-connected can be used to choose for every point $y \in Y$ a path-connected neighborhood V such that $f(V)$ is contained in a evenly covered open subset $U \subset X$. To analyze $\widetilde{f}\left(y^{\prime}\right)$ for $y^{\prime} \in V$, use the concatenation $\gamma * \delta$ of a path γ from y_{0} to y and $\delta: I \rightarrow V$ from y to y^{\prime}.
4. (10 points) Let $p:\left(\widetilde{X}, \widetilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be the universal covering of a path-connected and locally path-connected space X.
(a) It follows from the General Lifting Criterion that for $g \in G:=\pi_{1}\left(X, x_{0}\right)$ there is a unique $\operatorname{map} \phi_{g}:\left(\widetilde{X}, \widetilde{x}_{0}\right) \rightarrow\left(\widetilde{X}, g \widetilde{x}_{0}\right)$ making the diagram

commutative. Here $g \widetilde{x}_{0}:=\widetilde{\gamma}(1)$ is the endpoint of a lift $\widetilde{\gamma}: I \rightarrow \widetilde{X}$ with $\widetilde{\gamma}(0)=\widetilde{x}_{0}$ of any based loop γ in $\left(X, x_{0}\right)$ which represents $g \in \pi_{1}\left(X, x_{0}\right)$ (we have shown that $\widetilde{\gamma}(1)$ depends only on $[\gamma] \in \pi_{1}\left(X, x_{0}\right)$, not on the particular loop $\left.\gamma\right)$. Show that the map

$$
G \times \widetilde{X} \longrightarrow \widetilde{X} \quad(g, \widetilde{x}) \mapsto \phi_{g}(\widetilde{x})
$$

is an action map.
(b) Show that the action is free, i.e., for every $\widetilde{x} \in \widetilde{X}$, the only element of $g \in G$ with $g \widetilde{x}=\widetilde{x}$ is the identity element.
(c) Show that the action is transitive on the fiber $p^{-1}(x)$ for all $x \in X$, i.e., for $\widetilde{x}, \widetilde{x}^{\prime} \in p^{-1}(x)$ there is some $g \in G$ such that $g \widetilde{x}=\widetilde{x}^{\prime}$.
5. (10 points) Let (X, x_{0}) be a pointed space which is path-connected, locally path-connected, and semilocally simply connected. The goal of this assignment is to show that there is a bijection Ψ between

$$
\left\{\text { based coverings } p:\left(E, e_{0}\right) \rightarrow\left(X, x_{0} \text { with } E \text { path-connected }\right\} /\right. \text { isomorphism }
$$

and

$$
\left\{\text { subgroups of } \pi_{1}\left(X, x_{0}\right)\right\}
$$

It is given by sending a covering p to the subgroup $p_{*} \pi_{1}\left(E, e_{0}\right) \subset \pi_{1}\left(X, x_{0}\right)$.
(a) Show that Ψ is injective. Hint: use the general lifting criterion to show that any two path-connected based coverings $p:\left(E, e_{0}\right) \rightarrow\left(X, x_{0}\right)$ and $p^{\prime}:\left(E^{\prime}, e_{0}^{\prime}\right) \rightarrow\left(X, x_{0}\right)$ are isomorphic.
(b) Let $p: \widetilde{X} \rightarrow X$ be the universal covering of X, on which the fundamental group $G=$ $\pi_{1}\left(X, x_{0}\right)$ acts freely by covering maps; this action is transitive on all fibers $p^{-1}(x)$ for $x \in X$. Let H be a subgroup of G and let $H \backslash \widetilde{X}$ be the orbit space of action of the subgroup H and let $p^{H}:\left(H \backslash \widetilde{X},\left[\widetilde{x}_{0}\right]\right) \rightarrow\left(X, x_{0}\right),[\widetilde{x}] \mapsto p(\widetilde{x})$ be the projection map. Here $[\widetilde{x}]=H \widetilde{x}$ denotes the orbit through the point \widetilde{x}. Show that p^{H} is a covering and that $p_{*}^{H} \pi_{1}\left(H \backslash \widetilde{X},\left[\widetilde{x}_{0}\right]\right) \subset G$ is the subgroup H.

