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Homework Assignment # 9, due Nov. 15

1. (10 points) For i = 0, 1, 2, 3, let φi : (−1,+1)→ R be the following map

φ0(x) = x φ1(x) =

{
x x ≤ 0

2x x ≥ 0
φ2(x) = x3 φ3(x) = tan

πx
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All of these maps are homeomorphisms between M := (−1,+1) and an open subset of R,
allowing us to interpret (M,φi) as a chart for M . Let Ai be the atlas of M consisting
of the single chart (M,φi). The standard smooth structure on M is the smooth structure
determined by the smooth atlas A0.

(a) For which i = 1, 2, 3 is Ai a smooth atlas of M?

(b) Let S be the subset of {1, 2, 3} such that Ai is a smooth atlas of M . For which i ∈ S
does the smooth atlas Ai determine the standard smooth structure on M?

(c) For i ∈ S ∪ {0}, let Mi be the smooth manifold given by the topological manifold M
equipped with the smooth structure determined by Ai. For which i, j ∈ S are the
manifolds Mi, Mj diffeomorphic? Hint: If M is a smooth n manifold, and (U, φ) is a
chart belonging to the maximal smooth atlas of M , then φ is a diffeomorphism from U
to φ(U) ⊂ Rn.

2. (10 points) Let M be a smooth n-manifold. For a point p ∈M let

dM : T geo
p M = {γ : (−ε, ε)→M | γ(0) = p, γ smooth}/ ∼ −→ T alg

p M = Der(C∞p (M),R)

be the map that sends [γ] to the derivation dγ. More explicitly, if f is (the germ of) a
function f : M → R then dγf ∈ R is defined by

dγf := lim
t→0

= lim
t→0

f(γ(t))− f(p)

t
= (f ◦ γ)′(0);

i.e., dγ is the derivative of functions at p in the direction of the path γ.

(a) Show that the geometric and the algebraic definition of the differential of a smooth
map F : M → N are compatible in the sense that for p ∈ M the following diagram is
commutative:

T geo
p M T geo

F (p)N

T alg
p M T alg

F (p)N

F geo
∗

dM dN

F alg
∗
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(b) Show that dM is a bijection for M = Rn. Hint: Show that the map dM for M = Rn

factors in the form
T geo
p Rn Φ−→ Rn Ψ−→ T alg

p Rn,

where Φ, Ψ are the maps we showed in class are bijections (which motivated our definition
of the geometric/algebraic tangent space).

(c) Show that the map dM is a bijection for general M . Hint: use a chart for M and part
(a) to reduce to the case M = Rn.

3. (10 points) Let M , N be smooth manifolds, and let π1 : M×N →M and π2 : M×N → N
be the projection maps. Show that for any (x, y) ∈M ×N the map

α : T(x,y)(M ×N) −→ TxM ⊕ TyN

defined by
α(v) = ((π1)∗(v), (π2)∗(v))

is an isomorphism. Hint: To prove this, it is unnecessary to “unpack” the definition of the
tangent space of manifolds by using either the geometric or algebraic definition. Rather,
only the functorial properties of the tangent space, i.e., the chain rule, is needed, applied
to suitable projection/inclusion maps. Remark: Using this isomorphism, we will routinely
identify TxM and TyN with subspaces of T(x,y)(M ×N).

4. (10 points) Let Mn×k(R) be the vector space of n × k-matrices. For A ∈ Mn×k(R) let
At ∈ Mk×n(R) be the transpose of A, and let Sym(Rk) = {B ∈ Mk×k(R) | Bt = B} be the
vector space of symmetric k × k-matrices.

(a) Show that the map Φ: Mn×k(R)→ Sym(Rk), A 7→ AtA is smooth, and that its differen-
tial

Φ∗ : TAMn×k(R) = Mn×k(R) −→ TΦ(A)Sym(Rk) = Sym(Rk)

is given by Φ∗(C) = CtA+AtC. Hint: Use the geometric description of tangent spaces.
More explicitly, the tangent space TAMn×k(R) can be identified with Mn×k(R) by sending
a matrix C ∈Mn×k(R) to the path γ(t) := A+ tC.

(b) Show that the identity matrix is a regular value of the map Φ. This implies in particular
that the level set Φ−1(identity matrix) is a smooth manifold. We recall that we showed
in class that Φ−1(identity matrix) is the Stiefel manifold Vk(Rn) of orthonormal k-frames
in Rn. Hint: to show that Φ∗ : TAMn×n(R) → TeSym(Rk) is surjective for e = identity
matrix, compute Φ∗(C) for C = AB for B ∈ Sym(Rk).

(c) What is the dimension of Vk(Rn)?
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We remark that identifying Mn×k(R) in the usual way with the vector space Hom(Rk,Rn)
of linear maps f : Rk → Rn, a matrix belongs to Vk(Rn) if and only if the corresponding
linear map f is an isometry, that is, if f preserves the length of vectors in the sense that
||f(v)|| = ||v||, or equivalently, if f preserves the scalar product in the sense that

〈f(v), f(w)〉 = 〈v, w〉 for all v, w ∈ Rk.

The manifold Vk(Rn) is called the Stiefel manifold. We observe that Vn(Rn) is the orthogonal
group O(n) of isometries Rn → Rn.

5. (10 points) Recall that the special linear group SLn(R) and the orthogonal group O(n)
are both submanifolds of the vector space Mn×n(R) of n × n matrices. In particular, the
tangent spaces TASLn(R) for A ∈ SLn(R) and TAO(n) for A ∈ O(n) are subspaces of the
tangent space TAMn×n(R), which can be identified with Mn×n(R), since Mn×n(R) is a vector
space.

(a) Show that TeSLn(R) = {C ∈ Mn×n | tr(C) = 0}, where e is the identity matrix, and
tr(C) denotes the trace of the matrix C. Hint for parts (a) and (b): SLn(R) and O(n)
can be both be described as level sets F−1(c) of a regular value c for a suitable smooth
map F .

(b) Show that TeO(n) = {C ∈Mn×n | Ct = −C}.

(c) Let G ⊂ Mn×n(R) be either the group SLn(R) or the group O(n). For A ∈ G let
LA : G→ G be the map given by left multiplication by A, i.e., B 7→ AB. Show that the
differential

(LA)∗ : TBG −→ TABG is given by C 7→ AC,

where we identify all of these tangent spaces as subspaces of Mn×n(R). Hint: Compute
first the differential of the map Mn×n(R)→Mn×n(R), B 7→ AB, and then compare with
(LA)∗.

(d) Use parts (a)–(c) to determine the tangent space TAG ⊂ Mn×n(R) for A ∈ G and
G = SLn(R), as well as G = O(n).


