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1 Metric spaces and topological spaces

We recall that a map f : Rm → Rn between Euclidean spaces is continuous if and only if

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀y ∈ X d(x, y) < δ ⇒ d(f(x), f(y)) < ε, (1.1)

where d(x, y) = |x− y| ∈ R≥0 is the distance of two points x, y in some Euclidean space.

Example 1.2. (Examples of continuous maps.)

1. The addition map a : R2 → R, x = (x1, x2) 7→ x1 + x2;

2. The multiplication map m : R2 → R, x = (x1, x2) 7→ x1x2;

The proofs that these maps are continuous are simple estimates that you probably remember
from calculus. Since the continuity of all the maps we’ll look at in these notes is proved by
expressing them in terms of the maps a and m, we include the proofs of continuity of a and
m for completeness.

Proof. To prove that the addition map a is continuous, suppose x = (x1, x2) ∈ R2 and ε > 0
are given. We claim that for δ := ε/2 and y = (y1, y2) ∈ R2 with d(x, y) < δ we have
d(a(x), a(y)) < ε and hence a is a continuous function. To prove the claim, we note that

d(x, y) =
√
|x1 − y1|2 + |x2 − y2|2

and hence |x1 − y1| ≤ d(x, y), |x1 − y1| ≤ d(x, y). It follows that

d(a(x), a(y)) = |a(x)− a(y)| = |x1 + x2− y1− y2| ≤ |x1− y1|+ |x2− y2| ≤ 2d(x, y) < 2δ = ε.
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To prove that the multiplication map m is continuous, we claim that for

δ := min{1, ε/(|x1|+ |x2|+ 1)}

and y = (y1, y2) ∈ R2 with d(x, y) < δ we have d(m(x),m(y)) < ε and hence m is a
continuous function. The claim follows from the following estimates:

d(m(y),m(x)) = |y1y2 − x1x2| = |y1y2 − x1y2 + x1y2 − x1x2|
≤ |y1y2 − x1y2|+ |x1y2 − x1x2| = |y1 − x1||y2|+ |x1||y2 − x2|
≤ d(x, y)(|y2|+ |x1|) ≤ d(x, y)(|x2|+ |y2 − x2|+ |x1|)
≤ d(x, y)(|x1|+ |x2|+ 1) < δ(|x1|+ |x2|+ 1) ≤ ε

Lemma 1.3. The function d : Rn × Rn → R≥0 has the following properties:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) (symmetry);

3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Definition 1.4. A metric space is a set X equipped with a map

d : X ×X → R≥0

with properties (1)-(3) above. A map f : X → Y between metric spaces X, Y is

an isometry if d(f(x), f(y)) = d(x, y) for all x, y ∈ X;

continuous if condition (1.1) is satisfied.

Two metric spaces X, Y are isometric (resp. homeomorphic) if there are isometries (resp.
continuous maps) f : X → Y and g : Y → X which are inverses of each other.

Example 1.5. An important class of examples of metric spaces are subsets of Rn. Here are
particular examples we will be talking about during the semester:

1. The n-disk Dn := {x ∈ Rn | |x| ≤ 1} ⊂ Rn, and more generally, the n-disk of radius
r Dn

r := {x ∈ Rn | |x| ≤ r}. We note that D2
r is homeomorphic to D2 for all r, but

D2
r is isometric to D2 if and only if r = 1. (To see that Dn

r is not isometric to Dn
s we

note if a metric space X is isometric to a metric space Y , then diam(X) = diam(Y ),
where diam(X), the diameter of X is defined by diam(X) := sup{d(x, y) | x, y ∈ X} ∈
R≥0 ∪ {∞}. It is easy to see that diam(Dn

r ) = 2r.)

2. The n-sphere Sn := {x ∈ Rn+1 | |x| = 1} ⊂ Rn+1.

3. The torus T = {v ∈ R3 | d(v, C) = r} for 0 < r < 1. Here C = {(x, y, 0) | x2 + y2 =
1} ⊂ R3 is the standard circle, and d(x,C) = infy∈C d(x, y) is the distance between x
and C.
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4. The general linear group

GLn(R) = {vector space isomorphisms f : Rn → Rn}
↔ {(v1, . . . , vn) | vi ∈ Rn, det(v1, . . . , vn) 6= 0}
= {invertible n× n-matrices} ⊂ Rn × · · · × Rn︸ ︷︷ ︸

n

= Rn2

Here the bijection sends f : Rn → Rn to (f(e1), . . . , f(en)), where {ei} is the standard
basis of Rn.

5. The special linear group

SLn(R) = {(v1, . . . , vn) | vi ∈ Rn, det(v1, . . . , vn) = 1} ⊂ Rn2

6. The orthogonal group

O(n) = {linear isometries f : Rn → Rn}
= {(v1, . . . , vn) | vi ∈ Rn, vi’s are orthonormal} ⊂ Rn2

We recall that a collection of vectors vi ∈ Rn is orthonormal if |vi| = 1 for all i, and vi
is perpendicular to vj for i 6= j.

7. The special orthogonal group

SO(n) = {(v1, . . . , vn) ∈ O(n) | det(v1, . . . , vn) = 1} ⊂ Rn2

8. The Stiefel manifold

Vk(Rn) = {linear isometries f : Rk → Rn}
= {(v1, . . . , vk) | vi ∈ Rn, vi’s are orthonormal} ⊂ Rkn

Example 1.6. The following maps between metric spaces are continuous. While it is pos-
sible to prove their continuity using the definition of continuity, it will be much simpler to
prove their continuity by ‘building’ these maps using compositions and products from the
continuous maps a and m of Example 1.2. We will do this below in Lemma 2.7.

1. Every polynomial function f : Rn → R is continuous. We recall that a polynomial
function is of the form f(x1, . . . , xn) =

∑
i1,...,in

ai1,...,inx
i1
1 · · · · · xinn for ai1,...,in ∈ R.

2. Let Mn×n(R) = Rn2
be the set of n× n matrices. Then the map

Mn×n(R)×Mn×n(R) −→Mn×n(R) (A,B) 7→ AB

given by matrix multiplication is continuous. Here we use the fact that a map to the
product Mn×n(R) = Rn2

= R×· · ·×R is continuous if and only if each component map
is continuous (see Lemma 2.6), and each matrix entry of AB is a polynomial and hence
a continuous function of the matrix entries of A and B. Restricting to the invertible
matrices GLn(R) ⊂Mn×n(R), we see that the multiplication map

GLn(R)×GLn(R) −→ GLn(R)

is continuous. The same holds for the subgroups SO(n) ⊂ O(n) ⊂ GLn(R).
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3. The map GLn(R) → GLn(R), A 7→ A−1 is continuous (this is a homework problem).
The same statement follows for the subgroups of GLn(R).

Definition 1.7. Let X be a metric space. A subset U ⊂ X is open if for every point x ∈ U
there is some ε > 0 such that Bε(x) ⊂ U . Here Bε(x) = {y ∈ X | d(y, x) < ε} is the ball of
radius ε around x.

Lemma 1.8. A map f : X → Y between metric space is continuous if and only if f−1(V ) is
an open subset of X for every open subset V ⊂ Y .

Proof: homework

Lemma 1.9. Let X be a metric space, and U be the collection of open subsets of X. Then
U has the following properties:

1. X and ∅ belong to U.

2. The union of a collection in U belongs to U.

3. The intersection of a finite collection of subsets in U belongs to U.

Definition 1.10. A topology on a set X is a collection U of subsets of X satisfying the
properties of the previous lemma. A topological space is a pair (X,U) consisting of a set X
and a topology U on X. If (X,U) is a topological space, a subset U ⊂ X is open if U belongs
to U; it is closed if its complement X \ U belongs to U.

Let (X,U), (Y,V) be topological spaces. A map f : X → Y is continuous if and only if
f−1(U) ∈ V for every U ∈ U. It is easy to see that any composition of continuous maps is
continuous.

Examples of topological spaces.

1. Let X be a metric space. Then U = {open subsets of X} is a topology on X, the
metric topology.

2. Let X be a set. Then U = {all subsets of X} is a topology, the discrete topology. We
note that any map f : X → Y to a topological space Y is continuous. We will see later
that the only continuous maps Rn → X are the constant maps.

3. Let X be a set. Then U = {∅, X} is a topology, the indiscrete topology.

2 Constructions with topological spaces

2.1 The subspace topology

Let X be a topological space, and A ⊂ X a subset. Then

U = {A ∪ U | U ⊂
open

X}

is a topology on A called the subspace topology.
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Lemma 2.1. Let X be a metric space and A ⊂ X. Then the metric topology on A agrees
with the subspace topology on A (as a subset of X equipped with the metric topology).

Lemma 2.2. Let X, Y be topological spaces and let A be a subset of X equipped with the
subspace topology. Then the inclusion map i : A → X is continuous and a map f : Y → A
is continuous if and only if the composition i ◦ f : Y → X is continuous.

Basis for a topology. Sometimes it is convenient to define a topology U on a set X by first
describing a smaller collection B of subsets of X, and then defining U to be those subsets of
X that can be written as unions of subsets belonging to B. We’ve done this already when
defining the metric topology: Let X be a metric space and let B be the collection of subsets
of X of the form Bε(x) := {y ∈ X | d(y, x) < ε} (we call these subsets balls in X). A subset
of X is open (in the sense of Definition 1.7) if and only if it is a union of balls in X.

Lemma 2.3. Let B be a collection of subsets of a set X satisfying the following conditions

1. Every point x ∈ X belongs to some subset B ∈ B.

2. If B1, B2 ∈ B, then for every x ∈ B1 ∩ B2 there is some B ∈ B with x ∈ B and
B ⊂ B1 ∩B2.

Then U := {unions of subsets belonging to B} is a topology on X.

If the above conditions are satisfied, the collection B is called a basis for the topology U

or B generates the topology U. It is easy to check that the collection of balls in a metric
space satisfies the above conditions and hence the collection of open subsets is a topology as
claimed by Lemma 1.9.

2.2 The Product topology

Definition 2.4. The product topology on the Cartesian product X × Y = {(x, y) | x ∈
X, y ∈ Y } of topological spaces X, Y is the topology with basis

B = {U × V | U ⊂
open

X, V ⊂
open

Y }

The collection B obviously satisfies property (1) of a basis; property (2) holds since (U ×
V )∩ (U ′ × V ′) = (U ∩U ′)× (V ∩ V ′). We note that the collection B is not a topology since
the union of U ×V and U ′×V ′ is typically not a Cartesian product (e.g., draw a picture for
the case where X = Y = R and U,U ′, V, V ′ are open intervals).

Lemma 2.5. The product topology on Rm × Rn (with each factor equipped with the metric
topology) agrees with the metric topology on Rm+n = Rm × Rn.

Proof: homework.

Lemma 2.6. Let X, Y1, Y2 be topological spaces. Then the projection maps pi : Y1×Y2 → Yi
is continuous and a map f : X → Y1 × Y2 is continuous if and only if the component maps

X
f // Y1 × Y2

pi // Yi

are continuous for i = 1, 2.
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Proof: homework

Lemma 2.7. 1. Let A ⊂ Rn and let f, g : A → R be continuous maps. Then f + g and
f · g continuous maps from A to R. If g(x) 6= 0 for all x ∈ A, then also f/g is
continuous.

2. Any polynomial function f : Rn → R is continuous.

3. The multiplication map GLn(R)×GLn(R)→ GLn(R) is continuous.

Proof. To prove part (1) we note that the map f + g : A→ R can be factored in the form

A
f×g−→ R× R a−→ R

The map f × g is continuous by Lemma 2.6 since its component maps f, g are continuous;
the map a is continuous by Example 1.2, and hence the composition f + g is continuous.
The argument for f · g is the same, with a replaced by m. To prove that f/g is continuous,
we factor it in the form

A
f×g //R× R× p1×(I◦p2) //R× R× m //R,

where p1 (resp. p2) is the projection to the first (resp. second) factor of R×R× and I : R× →
R× is the inversion map x 7→ x−1. By Lemma 2.6 the pi’s are continuous, in calculus
we learned that I is continuous, and hence again by Lemma 2.6 the map p1 × (I ◦ p2) is
continuous.

To prove part (2), we note that the constant map Rn → R, x = (x1, . . . , xn) 7→ a is
obviously continuous, and that the projection map pi : Rn → R, x = (x1, . . . , xn) 7→ xi
is continuous by Lemma 2.6. Hence by part (1) of this lemma, the monomial function
x 7→ axi11 · · ·xinn is continuous. Any polynomial function is a sum of monomial functions and
hence continuous.

For the proof of (3), let Mn×n(R) = Rn2
be the set of n× n matrices and let

µ : Mn×n(R)×Mn×n(R) −→Mn×n(R) (A,B) 7→ AB

be the map given by matrix multiplication. By Lemma 2.6 the map µ is continuous if and
only if the composition

Mn×n(R)×Mn×n(R)
µ−→Mn×n(R)

pij−→ R

is continuous for all 1 ≤ i, j ≤ n, where pij is the projection map that sends a matrix A to
its entry Aij ∈ R. Since the pij(µ(A,B)) = (A · B)ij is a polynomial in the entries of the
matrices A and B, this is a continuous map by part (2) and hence µ is continuous.

Restricting µ to invertible matrices, we obtain the multiplication map

µ| : GLn(R)×GLn(R) −→ GLn(R)

that we want to show is continuous. We will argue that in general if f : X → Y is a
continuous map with f(A) ⊂ B for subsets A ⊂ X, B ⊂ Y , then the restriction f|A : A→ B
is continuous. To prove this, consider the commutative diagram

A
f|A //

i
��

B

j
��

X
f // Y
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where i, j are the obvious inclusion maps. These inclusion maps are continuous w.r.t. the
subspace topology on A, B by Lemma 2.2. The continuity of f and i implies the continuity
of f ◦ i = j ◦ f|A which again by Lemma 2.2 implies the continuity of f|A.

2.3 The Quotient topology

Let X be a topological space, let ∼ be an equivalence relation on X, let X/ ∼ be the set of
equivalence classes and let

p : X → X/ ∼ x 7→ [x]

be the projection map that sends a point x ∈ X to its equivalence class [x]. The quotient
topology onX/ ∼ is the collection of subsets U = {U ⊂ X/ ∼| p−1(U) is an open subset of X}.
The set X/ ∼ equipped with the quotient topology is called the quotient space.

Lemma 2.8. The projection map p : X → X/ ∼ is continuous and a map f : X/ ∼→ Y to a
topological space Y is continuous if and only if the composition p ◦ f : X → Y is continuous.

Example 2.9. 1. Let A be a subset of a topological space X. Define a equivalence
relation ∼ on X by x ∼ y if x = y or x, y ∈ A. We use the notation X/A for the
quotient space X/ ∼.

(a) We claim that the quotient space [−1,+1]/{±1} is homeomorphic to S1 via the
map f : [−1,+1]/{±1} → S1 given by [t] 7→ eπit. Here we use that a continuous
bijection f : X → Y from a compact space to a Hausdorff space is a homeomor-
phism.

(b) More generally, Dn/Sn−1 is homeomorphic to Sn. (proof: homework)

2. quotients of the square by various equivalence relations gives: torus, Klein bottle, real
projective plane D2/ ∼= S2/ ∼. We can obtain a surface of genus 2 from an 8-gon
with suitable boundary identifications (first redraw 8-gon as a union of squares with a
corner chipped off; identifying boundaries on each square leads to punctured torus).

3. The real projective space

RPn := {1-dimensional subspaces of Rn+1} = Sn/v ∼ ±v

Homework: RP1 ≈ S1; RP3 ≈ SO(3)

4. The complex projective space

CPn := {1-dimensional subspaces of Cn+1} = S2n+1/v ∼ zv, z ∈ S1

homework: CP1 ≈ S2

5. The Grassmann manifold Gk(Rn+k) := {k-dimensional subspaces of Rn+k}. There is a
surjective map

Vk(Rn+k) = {isometries f : Rk → Rn+k}� Gk(Rn+k) f 7→ im(f)
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Two isometries f, f ′ have the same image if and only if there is some isometry g : Rk →
Rk such that f ′ = f ◦ g. In other words, we get a bijection Vk(Rn+k)/ ∼↔ Gk(Rn+k)
if we define an equivalence relation ∼ on the Stiefel manifold by f ∼ f ′ if and only if
there is some isometry g : Rk → Rk such that f ′ = f ◦ g. This the quotient topology
on Vk(Rn+k)/ ∼ then gives Gk(Rn+k) a topology (note that for k = 1, Vk(Rn+k) = Sn,
and this agrees with how we put a topology on the projective space RPn = G1(Rn+1).

6. If X is a topological space and a group H acts X (say from the right via X ×H → X,
(x, h) 7→ xh; requirement: (xh)h′ = x(hh′) for x ∈ X, h, h′ ∈ H). The group action
defines an equivalence relation ∼ on X via x′ ∼ x if and only if there is some h ∈ H
such that x′ = xh. Equivalence classes are called the orbits of the action; the quotient
space X/ ∼ is the orbit space, denoted X/H.

(a) Gk(Rn+k) = Vk(Rn+k)/O(k)

(b) homogeneous spaces G/H for topological groups G. Explanation: a topological
group is a group G equipped with a topology such that the multiplication map
G×G→ G and the inversion map G→ G, g 7→ g−1 are continuous. A subgroup
H ≤ G act on G via the multiplication map G × H → G, (g, h) 7→ gh. The
orbit space is denoted G/H (or H\G if we use the corresponding left H-action
on G), and is called homogeneous space. Warning: there is difference between the
homogeneous space G/H and the quotient space of G obtained by collapsing the
subspace H to a point (Example 2.9 (1)), which we also would denote by G/H
(unfortunately, both notations are standard; fortunately, it is usually clear from
the context which version of G/H we are talking about, since the homogeneous
space makes only sense if H is a subgroup of a topological group G).

We want to show that many topological spaces we’ve discussed so far are actually homo-
geneous spaces. To do that we use the following result.

Proposition 2.10. (Recognition principle for homogeneous spaces) Let G be a com-
pact topological group that acts continuously and transitively on a topological space X. Then
X is homeomorphic to the homogeneous space G/H where H = {g ∈ G | gx0 = x0} is the
isotropy subgroup of some point x0 ∈ X.

Proof. Let
f : G/H −→ X be defined by [g] 7→ gx0

This map is surjective by the transitivity assumption; it is injective since if gx0 = g′x0, then
x0 = g−1g′x0 and hence h := g−1g′ belongs to the isotropy subgroup H. This implies g′ = gh,
and hence [g′] = [g] ∈ G/H.

To show that f is continuous it suffices to show that the composition f ◦ p : G → X,
g 7→ gx0 is continuous. To see this, we factor f ◦ p in the form

G = G× {x0} ↪→ G×X µ−→ X

where µ is the action map

Examples of homogeneous spaces.
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1. spheres Sn ≈ O(n+ 1)/O(n)
(take the action O(n+ 1)× Sn → Sn, (f, v) 7→ f(v) and x0 = (0, . . . , 0, 1) ∈ Sn)

2. Stiefel manifold Vk(Rn+k) ≈ O(n+ k)/O(n)
(take the action O(n+ k)× Vk(Rn+k)→ Vk(Rn+k), (g, f) 7→ g ◦ f and x0 : Rk → Rn+k,
v 7→ (0, v)).

3. Grassmann manifold Gk(Rn+k) ≈ O(n+ k)/O(n)×O(k) (homework problem).

3 Properties of topological spaces

Definition 3.1. Let X be a topological space, xi ∈ X, i = 1, 2, . . . a sequence in X and
x ∈ X. Then x is the limit of the xi’s if for all open subsets U ⊂ X containing x there is
some N such that xi ∈ U for all i ≥ N .

Caveat: If X is a topological space with the indiscrete topology, every point is the limit
of every sequence. The limit is unique if the topological space has the following property:

Definition 3.2. A topological space X is Hausdorff if for every x, y ∈ X, x 6= y, there are
disjoint open subsets U, V ⊂ X with x ∈ U , y ∈ V .

Note: if X is a metric space, then the metric topology on X is Hausdorff (since for x 6= y
and ε = d(x, y)/2, the balls Bε(x), Bε(y) are disjoint open subsets).

Warning: The notion of Cauchy sequences can be defined in metric spaces, but not in
general for topological spaces (even when they are Hausdorff).

Lemma 3.3. Let X be a topological space and A a closed subspace of X. If xn ∈ A is a
sequence with limit x, then x ∈ A.

Proof. Assume x /∈ A. Then x is a point in the open subset X \ A and hence by the
definition of limit, all but finitely many elements xn must belong to X \A, contradicting our
assumptions.

Definition 3.4. An open cover of a topological space X is a collection of open subsets of
X whose union is X. If for every open cover of X there is a finite subcollection which also
covers X, then X is called compact.

Some books (like Munkres’ Topology) refer to open covers as open coverings, while newer
books (and wikipedia) seem to prefer to above terminology, probably for the same reasons
as me: to avoid confusions with covering spaces, a notion we’ll introduce soon.

Now we’ll prove some useful properties of compact spaces and maps between them, which
will lead to the important Corollaries ?? and 3.7.

Lemma 3.5. If f : X → Y is a continuous map and X is compact, then the image f(X) is
compact.

In particular, if X is compact, then any quotient space X/ ∼ is compact, since the
projection map X → X/ ∼ is continuous with image X/ ∼.
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Proof. To show that f(X) is compact assume that {Ua}, a ∈ A is an open cover of the
subspace f(X). Then each Ua is of the form Ua = Va ∩ f(X) for some open subset Va ∈ Y .
Then {f−1(Va)}, a ∈ A is an open cover of X. Since X is compact, there is a finite subset
A′ of A such that {f−1(Va)}, a ∈ A′ is a cover of X. This implies that {Ua}, a ∈ A′ is a
finite cover of f(X), and hence f(X) is compact.

Lemma 3.6. 1. If K is a closed subspace of a compact space X, then K is compact.

2. If K is compact subspace of a Hausdorff space X, then K is closed.

Proof. To prove (1), assume that {Ua}, a ∈ A is an open covering of K. Since the Ua’s
are open w.r.t. the subspace topology of K, there are open subsets Va of X such that
Ua = Va ∩K. Then the Va’s together with the open subset X \K form an open covering of
X. The compactness of X implies that there is a finite subset A′ ⊂ A such that the subsets
Va for a ∈ A′, together with X \K still cover X. It follows that Ua, a ∈ A′ is a finite cover
of K, showing that K is compact.

The proof of part (2) is a homework problem.

Corollary 3.7. If f : X → Y is a continuous bijection with X compact and Y Hausdorff,
then f is a homeomorphism.

Proof. We need to show that the map g : Y → X inverse to f is continuous, i.e., that
g−1(U) = f(U) is an open subset of Y for any open subset U of X. Equivalently (by passing
to complements), it suffices to show that g−1(C) = f(C) is a closed subset of Y for any
closed subset C of C.

Now the assumption that X is compact implies that the closed subset C ⊂ X is compact
by part (1) of Lemma 3.6 and hence f(C) ⊂ Y is compact by Lemma 3.5. The assumption
that Y is Hausdorff then implies by part (2) of Lemma 3.6 that f(C) is closed.

Lemma 3.8. Let K be a compact subset of Rn. Then K is bounded, meaning that there is
some r > 0 such that K is contained in the open ball Br(0) := {x ∈ Rn | d(x, 0) < r}.

Proof. The collection Br(0) ∩K, r ∈ (0,∞), is an open cover of K. By compactness, K is
covered by a finite number of these balls; if R is the maximum of the radii of these finitely
many balls, this implies K ⊂ BR(0) as desired.

Corollary 3.9. If f : X → R is a continuous function on a compact space X, then f has a
maximum and a minimum.

Proof. K = f(X) is a compact subset of R. Hence K is bounded, and thus K has an infimum
a := inf K ∈ R and a supremum b := supK ∈ R. The infimum (resp. supremum) of K is the
limit of a sequence of elements in K; since K is closed (by Lemma 3.6 (2)), the limit points
a and b belong to K by Lemma 3.3. In other words, there are elements xmin, xmax ∈ X with
f(xmin) = a ≤ f(x) for all x ∈ X and f(xmax) = b ≥ f(x) for all x ∈ X.

In order to use Corollaries 3.7 and 3.9, we need to be able to show that topological spaces
we are interested in, are in fact compact. Note that this is quite difficult just working from
the definition of compactness: you need to ensure that every open cover has a finite subcover.
That sounds like a lot of work...

Fortunately, there is a very simple classical characterization of compact subspaces of
Euclidean spaces:
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Theorem 3.10. (Heine-Borel Theorem) A subspace X ⊂ Rn is compact if and only if
X is closed and bounded.

We note that we’ve already proved that if K ⊂ Rn is compact, then K is a closed subset
of Rn (Lemma 3.6(2)), and K is bounded (Lemma 3.8).

There two important ingredients to the proof of the converse, namely the following two
results:

Lemma 3.11. A closed interval [a, b] is compact.

This lemma has a short proof that can be found in any pointset topology book, e.g.,
[Mu].

Theorem 3.12. If X1, . . . , Xn are compact topological spaces, then their product X1×· · ·×Xn

is compact.

For a proof see e.g. [Mu, Ch. 3, Thm. 5.7]. The statement is true more generally for a
product of infinitely many compact space (as discussed in [Mu, p. 113], the correct definition
of the product topology for infinite products requires some care), and this result is called
Tychonoff’s Theorem, see [Mu, Ch. 5, Thm. 1.1].

Proof of the Heine-Borel Theorem. Let K ⊂ Rn be closed and bounded, say K ⊂ Br(0).
We note that Br(0) is contained in the n-fold product

P := [−r, r]× · · · × [−r, r] ⊂ Rn

which is compact by Theorem 3.12. So K is a closed subset of P and hence compact by
Lemma 3.6(1).
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