Name:
Take Home Exam, Feb. 26, 2008

You can use any resources for this test (e.g., books, notes, internet) with the exception of fellow mathematicians: talking to anybody except me about this exam before you turn your exam in constitutes a violation of the honor code. Please return the exam to me in class on Wednesday, Feb. 27. Don’t forget part (b) of problem 4 on the back page. I’ll be around most of the day today, except 2-3:30 PM. Good Luck!

1. (10 points) Let A be a subspace of a topological space X and denote by $i: A \to X$ the inclusion map. Show that if A is a retract of X, then the induced map $i_*: H_q(A) \to H_q(X)$ is injective.

Proof. The assumption that A is a retract of X means that there is a map $r: X \to A$ making the following diagram commutative:

$$
\begin{array}{ccc}
A & \xrightarrow{i} & X \\
\downarrow{=} & & \downarrow{r} \\
A & \xrightarrow{r} & X
\end{array}
$$

commutative, where $\mathbf{1}$ denotes the identity map. Applying the homology functor, it follows that the diagram

$$
\begin{array}{ccc}
H_q(A) & \xrightarrow{i_*} & H_q(X) \\
\downarrow{=} & & \downarrow{r_*} \\
H_q(A) & \xrightarrow{r_*} & H_q(X)
\end{array}
$$

is commutative. Hence i_* is injective, since if $i_*(a) = i_*(a')$, then $a = r(i_*(a)) = r(i_*(a')) = a'$.

2. (15 points) Suppose the following diagram of abelian groups and group homomorphisms is commutative with exact rows:

$$
\begin{array}{ccccccc}
\ldots & \xrightarrow{c_{q+1}} & C_{q+1} & \xrightarrow{\partial_{q+1}} & A_q & \xrightarrow{f_q} & B_q & \xrightarrow{g_q} & C_q & \xrightarrow{\partial_q} & A_{q-1} & \xrightarrow{} & \ldots \\
& & c_q & \downarrow{a_q} & b_q & \downarrow{c_q} & \downarrow{a_{q-1}} & & & & & & \\
& & C'_q & \xrightarrow{\partial'_q} & A'_q & \xrightarrow{f'_q} & B'_q & \xrightarrow{g'_q} & C'_q & \xrightarrow{\partial'_q} & A'_{q-1} & \xrightarrow{} & \ldots
\end{array}
$$
Assuming in addition that the maps \(c_q \) are isomorphisms show that there is a long exact sequence of the form

\[
\longrightarrow A_q \longrightarrow A'_q \oplus B_q \longrightarrow B'_q \longrightarrow A_{q-1} \longrightarrow A'_{q-1} \oplus B_{q-1} \longrightarrow B'_{q-1} \longrightarrow
\]

First define carefully the homomorphisms in the above sequence. Then prove exactness at each location.

Proof. We define the maps in the above sequence as follows:

\[
\begin{align*}
\alpha_q &: A_q \rightarrow A'_q \oplus B_q & a &\mapsto (a_q(a), f_q(a)) \\
\beta_q &: A'_q \oplus B_q \rightarrow B'_q & (a', b) &\mapsto f'_q(a') - b_q(b) \\
\gamma_q &: B'_q \rightarrow A_{q-1} & b' &\mapsto \partial_q c_q^{-1} g'_q(b')
\end{align*}
\]

Exactness at \(B'_q \). First we show \(\gamma_q \beta_q = 0 \). For \((a', b) \in A'_q \oplus B_q \) we have

\[
\gamma_q \beta_q(a', b) = \partial_q c_q^{-1} g'_q(f'_q(a') - b_q(b)) = -\partial_q c_q^{-1} g'_q b_q b = \partial_q g_q b = 0
\]

Here the second equality holds due to \(g'_q f'_q = 0 \), the third follows from the commutativity of the third square, and the last is due to \(\partial_q g_q = 0 \).

To show \(\ker \gamma_q \subseteq \im \beta_q \) let \(b' \in B'_q \) with \(\gamma_q b' = \partial_q c_q^{-1} g'_q b' = 0 \). By exactness at \(C_q \) there is an element \(b \in B_q \) such that \(g_q b = c_q^{-1} g'_q b' \) or equivalently

\[
g'_q b' = c_q g_q b = g'_q b_q b,
\]

where the second equality follows from commutativity of the third square. It follows that \(b' - b_q b \) is in the kernel of \(g'_q \) and hence by exactness at \(B'_q \), there is an element \(a' \in A'_q \) with \(f'_q a' = b' - b_q b \). This implies

\[
\beta_q(a', -b) = f'_q a' + b_q b = b'
\]

which shows that \(b' \) is in the image of \(\beta_q \).

Exactness at \(A'_q \oplus B_q \). First we show \(\beta_q \alpha_q = 0 \). For \(a \in A_q \) we have

\[
\beta_q \alpha_q a = \beta_q(a_q(a), f_q(a)) = f'_q a_q a - b_q f_q a = 0
\]

due to the commutativity of the second square.
To show ker $\beta_q \subset \text{im} \alpha_q$, let $(a', b) \in A'_q \oplus B_q$ with
$$\beta_q(a', b) = f'_q a' - b_q b = 0.$$
Then we have
$$c_q g_q b = g'_q b_q b = g'_q f'_q a' = 0,$$
where the first equality is due to the commutativity of the third square, and the last is due to exactness at B'_q. Since c_q is an isomorphism, this implies $g_q b = 0$ and hence by exactness at B_q, there is an element $a \in A_q$ with $f_q a = b$. If we could show $a_q a = a'$, we would be done. However we can only say the following:
$$f'_q (a_q a - a') = f'_q a_q a - f'_q a' = b_q f_q a - b_q b = 0$$
where the second equality follows from the commutativity of the second square and our assumption $f'_q a' = b_q b$. Since f'_q is not necessarily injective, we can’t conclude that $a_q a = a'$, but thanks to exactness at A'_q, it implies that there is an element $c' \in C'_{q+1}$ with $\partial_{q+1} c' = a_q a - a'$. Moreover, since c_{q+1} is an isomorphism, there is a $c \in C_{q+1}$ with $c_{q+1} c = c'$. Now we modify the element $a \in A_q$ by defining $\bar{a} \overset{\text{def}}{=} a - \partial_{q+1} c$. We calculate
$$f_q \bar{a} = f_q (a - \partial_{q+1} c) = f_q a = b$$
$$a_q \bar{a} = a_q (a - \partial_{q+1} c) = a_q a - \partial'_{q+1} c_{q+1} c = a_q a - (a_q a - a') = a'$$
This shows that $\alpha_q (\bar{a}) = (a', b)$ as desired.

Exactness at A_q. First let us show $\alpha_q \circ \gamma_{q+1} = 0$. For $b' \in B'_{q+1}$ we have
$$\alpha_q \gamma_{q+1} b' = \alpha_q (\partial_{q+1} c_{q+1}^{-1} g'_{q+1} b')$$
$$= (a_q \partial_{q+1} c_{q+1}^{-1} g'_{q+1} b', f_q \partial_{q+1} c_{q+1}^{-1} g'_{q+1} b')$$
$$= (\partial'_{q+1} g'_{q+1} b', 0) = (0, 0)$$
since the compositions $f_q \partial_{q+1}$ and $\partial'_{q+1} g'_{q+1}$ are zero due to the exactness at A_q resp. A'_q.
To show ker $\alpha_q \subset \text{im} \gamma_{q+1}$, let $a \in A_q$ with $\alpha_q a = (a_q a, f_q a) = (0, 0)$. By exactness at A_q there is an element $c \in C_{q+1}$ with $\partial_{q+1} c = a$. Then
$$\partial'_{q+1} c_{q+1} c = a_q \partial_{q+1} c = a_q a = 0$$
and hence by exactness at C'_{q+1}, there is an element $b' \in B'_{q+1}$ with $g'_{q+1}b' = c_{q+1}$. This implies

$$\gamma_{q+1}b' = \partial_{q+1}c_{q+1}^{-1}g'_{q+1}b' = \partial_{q+1}c = a,$$

which shows that a is in the image of γ_{q+1}.

3. (10 points) Let x_1, \ldots, x_l be distinct points of \mathbb{R}^n. Calculate the reduced homology groups of the space $\mathbb{R}^n \setminus \{x_1, \ldots, x_l\}$. Hint: Compare the homology groups of $\mathbb{R}^n \setminus \{x_1, \ldots, x_l\}$ with those of \mathbb{R}^n by analyzing the long exact homology sequence of this pair of spaces.

Proof. Consider the following portion of the long exact sequence of the pair $(\mathbb{R}^n, \mathbb{R}^n \setminus X)$, $X \overset{\text{def}}{=} \{x_1, \ldots, x_l\}$:

$$\tilde{H}_{q+1}(\mathbb{R}^n) \xrightarrow{\partial} \tilde{H}_q(\mathbb{R}^n \setminus X) \xrightarrow{\partial} \tilde{H}_q(\mathbb{R}^n)$$

The reduced homology groups of \mathbb{R}^n vanish since \mathbb{R}^n is contractible, and hence the map ∂ in the sequence above is an isomorphism.

Let $B_i \subset \mathbb{R}^n$ be a collection of mutually disjoint open balls with center $x_i \in B_i$, and let $B \overset{\text{def}}{=} \bigcup_{i=1}^l B_i$ be the union of these balls. We note that the pair $(B, B \setminus X)$ is obtained from the larger pair $(\mathbb{R}^n, \mathbb{R}^n \setminus X)$ by excising $U = \mathbb{R}^n \setminus B$. We note that the closure of U is contained in the open set $\mathbb{R}^n \setminus X$ and hence we obtain the excision isomorphism

$$H_q(\mathbb{R}^n, \mathbb{R}^n \setminus X) \cong H_q(B, B \setminus X).$$

To calculate this homology group, we note that the pair $(B, B \setminus X)$ is the disjoint union of the pairs $(B_i, B_i \setminus \{x_i\})$, and hence

$$H_q(B, B \setminus X) \cong \bigoplus_{i=1}^l H_q(B_i, B_i \setminus \{x_i\}).$$

Finally we note that B_i is a manifold of dimension n and hence the local homology group $H_q(B_i, B_i \setminus \{x_i\})$ is isomorphic to \mathbb{Z} for $q = n$ and trivial for $q \neq n$. Putting the various isomorphisms together, we obtain:

$$\tilde{H}_q(\mathbb{R}^n \setminus X) = \begin{cases}
\mathbb{Z} & q = n - 1 \\
0 & q \neq n - 1
\end{cases}$$

\[\square \]
4. a) (10 points) Show that if \(f: S^n \to S^n \) is a continuous map of degree 0, then there are points \(x, y \in S^n \) such that \(f(x) = x \) and \(f(y) = -y \). Hint: Show that if \(f(y) \neq -y \) for all \(y \in S^n \), you could construct a homotopy between \(f \) and the identity map. Use a similar argument to show that \(f(x) \neq x \) for all \(x \in S^n \) leads to a contradiction.

Proof. Let us assume that \(f(y) \neq -y \) for all \(y \in S^n \). This implies that for all \(y \in S^n \) and \(t \in [0, 1] \) the vector \((1 - t)f(y) + ty\) is non-zero and hence

\[
H: S^n \times [0, 1] \to S^n \quad H(y, t) = \frac{(1 - t)f(y) + ty}{\| (1 - t)f(y) + ty \|}
\]

is a homotopy between \(f \) and the identity map \(\mathbb{I} \). This leads to the contradiction \(0 = \text{deg}(f) = \text{deg}(\mathbb{I}) = 1 \).

Similarly, if we assume that \(f(x) \neq x \) for all \(x \in S^n \), then for all \(x \in S^n \) and \(t \in [0, 1] \) the vector \((1 - t)f(x) - tx\) is non-zero and hence

\[
H: S^n \times [0, 1] \to S^n \quad H(x, t) = \frac{(1 - t)f(x) - tx}{\| (1 - t)f(x) - tx \|}
\]

is a homotopy between \(f \) and \(-\mathbb{I}\). This leads to the contradiction \(0 = \text{deg}(f) = \text{deg}(-\mathbb{I}) = \pm 1 \). \(\square \)

b) (5 points) Let \(F \) be a vector field on the disk \(D^n \subset \mathbb{R}^n \); i.e., \(F \) is a continuous map \(F: D^n \to \mathbb{R}^n \) which we picture by drawing the vector \(F(x) \) with its tail at the point \(x \). Show that if \(F(x) \neq 0 \) for all \(x \in D^n \), then there must be some point \(x \) on \(\partial D^n \) where \(F \) points radially outward, and another point \(y \) on \(\partial D^n \) where \(F \) points radially inward (i.e., \(F(x) = ax \) and \(F(y) = -by \) for some positive real numbers \(a, b \)).

Proof. Due to the assumption \(F(x) \neq 0 \) for all \(x \in D^n \), we can construct a homotopy

\[
H: S^n \times [0, 1] \to S^n \quad H(x, t) = \frac{F(tx)}{\|F(tx)\|}
\]

between the map \(f: S^n \to S^n \) given by \(f(x) = \frac{F(x)}{\|F(x)\|} \) and the constant map \(F_0: S^n \to S^n \), \(x \mapsto \frac{F(x)}{\|F(x)\|} \). Since \(F_0 \) is not surjective, its degree is zero and hence \(\text{deg}(f) = \text{deg}(F_0) = 0 \). This allows us to apply part (a) to the map \(f \) and we conclude that there exists points \(x, y \in S^n \) such that \(f(x) = x \), \(f(y) = -y \). In terms of the vector field \(F \) this means that \(F(x) = \|F(x)\|f(x) = \|F(x)\|x \) and \(F(y) = \|F(y)\|f(y) = -\|F(y)\|y \) as desired. \(\square \)