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GEOMETRIC CONSEQUENCES OF EXTREMAL BEHAVIOR 
IN A THEOREM OF MACAULAY 

ANNA BIGATTI, ANTHONY V. GERAMITA, AND JUAN C. MIGLIORE 

ABSTRACT. F. S. Macaulay gave necessary and sufficient conditions on the 
growth of a nonnegative integer-valued function which determine when such 
a function can be the Hilbert function of a standard graded k-algebra. We 
investigate some algebraic and geometric consequences which arise from the 
extremal cases of Macaulay's theorem. Our work also builds on the fundamen- 
tal work of G. Gotzmann. 

Our principal applications are to the study of Hilbert functions of zero- 
schemes with uniformity conditions. As a consequence, we have new strong 
limitations on the possible Hilbert functions of the points which arise as a 
general hyperplane section of an irreducible curve. 

INTRODUCTION 

One of the very fruitful ways of studying curves in pr+l is through a detailed 
investigation of the points of a general hyperplane section of the curve. This 
approach has been baptized the Castelnuovo Method in recognition of the early 
successes of this method achieved by G. Castelnuovo in the early years of this 
century. A modem introduction to these ideas, along with several notable ad- 
vances in the method, are reported in the beautiful Montreal lecture notes of 
D. Eisenbud and J. Harris [EH]. 

One principal area of investigation has centered on the postulation of the 
points of a general hyperplane section of a curve in pjDr+l . Roughly speaking, one 
shows that the postulation of such point sets has limitations beyond those one 
might expect. Most frequently, the limitations are the result of the uniformity 
that all subsets of the hyperplane section (with the same cardinality) must share. 
One shows that this uniformity is inconsistent with certain postulations since 
those postulations automatically imply that subsets of the section lie on special 
varieties while other subsets of the same cardinality (obviously) do not. 

In this paper we give many results along these lines, showing how certain 
types of postulations force very strong geometric conclusions about the set of 
points. (Actually, many of our results have been stated for higher-dimensional 
schemes, not even always reduced, although our inspiration was the case of 
points.) We have tried to greatly generalize some of the known results, and we 
believe that our techniques should have many further consequences. 

The common ingredient of all these results is that they arise because the first 
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difference of the Hilbert function of that set of points achieves the bound given 
in a theorem of F. S. Macaulay [M]. This type of extremal behaviour had begun 
to be studied in related works of G. Gotzmann [Go] and M. Green [Gr], and 
in fact the latter paper greatly influenced our work. 

This paper was motivated by an attempt to understand some results of E. 
Davis [D] in the context of maximal growth of the Hilbert function. Briefly, 
Davis' results imply (among other things) that if Z is a zero-dimensional sub- 
scheme of 12 whose Hilbert function is of a certain form then Z contains a 
large subscheme lying on a plane curve of specified degree. 

A plane curve is, of course, both a curve and a hypersurface and we have 
been able to extend the results just noted in both directions. 

The extension to hypersurfaces is the easier of the two to establish. We inter- 
pret Davis' result about points in 12 as a consequence of one kind of extremal 
behavior (in the sense of Macaulay) in the growth of the difference function of 
the Hilbert function of the points and, having isolated that interpretation, we 
consider that extremal behavior more generally. We prove that a consequence 
of this behavior (in the special case of the ideal of points in Pn) is that a 
large number of the points must lie on a hypersurface of (relatively) low degree. 
Davis' results for points in 12 are immediate corollaries. 

The extension to curves is more subtle. We show (roughly speaking) that if 
the ideal of a zeroscheme in pn grows as if it were the ideal of a curve in Pn 
of degree s then there is a large subscheme actually lying on some curve of 
degree s. Furthermore, under certain hypotheses on the zeroscheme, we show 
that this curve is reduced and irreducible (see below). We must use the Gruson- 
Lazarsfeld-Peskine theorem about the regularity of the ideal sheaf of a reduced 
and irreducible curve in Pn [GLP] to obtain our results. 

We now explain how the paper is organized. In ?0 we review the ingredients 
from Macaulay's work and the work of Gotzmann and of Green. We then 
describe (by example) some of the known results which force a large subset 
of the given points to lie on a variety of some special form, and we give the 
corresponding conclusions from our results in those cases. The examples are 
there to show how our results either subsume or extend the known results. 

Section 1 lays the groundwork for the results in the later sections. Our situ- 
ation is different from that of Gotzmann: we assume that the Hilbert function 
of the quotient ideal (Iz + (L))/(L) has maximal growth, and we draw conse- 
quences for the original ideal Iz . Green has some results along these lines, but 
we take a different point of view, and we get different sorts of results. 

In ?2 we consider the case where a homogeneous component of the ideal 
(not necessarily of a finite set of points) has a GCD. Here is where we give the 
"hypersurface" extension of Davis' results about points in p2. 

In ?3 we begin the investigation of conditions on the Hilbert function of a 
set of points in Pn which force a subset to lie on some variety V of dimension 
d, where now d is such that 1 < d < n - 1, i.e., we attempt to move beyond 
the simpler case of d = n - 1. Although evidence, in the literature, is sparse 
that there might be such results (although see [Ma, Lemma 2.2 and Theorem 
2.3] for some noteworthy examples) we are able to get rather strong conclusions 
for the case d = 1 (i.e., for V a curve in pn) . Our main results in this section 
(Theorem 3.6 and Corollary 3.7) show that not only is V a curve, but if the 
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set of points is reduced then so is V. Furthermore, in this case a great deal of 
information is obtained about the relations between the subset of points lying 
on V and the subset off V. 

For 1 < d < n - 1 our results are less complete. We do, however, get some 
interesting results for the case of V a linear subvariety or V a hypersurface in a 
linear subvariety. In this way we recapture one result of Green [Gr, Theorem 3] 
(our Lemma 3.1), with a completely different proof, and slightly extend another 
[Gr, Theorem 4] (our Corollary 3.2). 

In ?4 we give some applications of our results. The most striking ones elimi- 
nate certain Hilbert functions as the Hilbert function of the general hyperplane 
section of a reduced and irreducible curve in pn (n > 3). These are very differ- 
ent from the restrictions first established by Eisenbud and Harris [EH]. We do 
this by showing how maximal growth together with certain uniformity assump- 
tions on the set of points have strong consequences on V and on the number 
of points lying on V, when V is a hypersurface and when V is a curve. In 
the latter case, for instance, Theorem 4.2 shows that if the points are in linear 
general position and s < 2n then V is irreducible and "almost all" of the 
points lie on V. More strikingly, in Theorem 4.7 we show that if the points 
have the Uniform Position Property (with no assumption on s) then again V 
is irreducible and now all of the points lie on V. 

We are grateful to Y. Pitteloud for reminding us about the paper [Gr], which 
was instrumental in leading us to the approach we have taken in this paper. 
The first and third authors are very grateful to the Department of Mathematics 
and Statistics of Queen's University for their hospitality. The first author would 
like to thank the Italian C.N.R., and the second and third authors would like to 
thank the N.S.E.R.C. of Canada, for financial support during the preparation 
of this work. 

0. BACKGROUND RESULTS 

Let R = k[Xo, ..., Xn] be the polynomial ring in n variables over the field 
k, with its usual gradation. Let I C R be a homogeneous ideal in R and set 
A = R/I. Then A = E Al (t > 0) has an obvious gradation where At = Re/It. 
The Hilbert function of A is the integer valued function on the natural numbers 
denoted by 

H(A, t) := dimkAt = dimkRt-dimkI= (t n) -dimk lt- 

The first difference of the function H above is denoted AH and is defined by 
AH(A, t) :=H(A, t)-H(A, t- 1). 

The ideal m = (Xo, ..., Xn) C R is usually called the irrelevant maximal 
ideal of R and its image in A, mIT, is called the irrelevant maximal ideal of A. 

Recall that a saturated homogeneous ideal I of the graded ring A is a ho- 
mogeneous ideal in A for which the irrelevant maximal ideal of A is not an 
associated prime ideal. For any homogeneous ideal I of A, the saturation of 
I, denoted Isat, is defined by 

ISat {= f E A: f-m C I for some integer 1}. 
It is well known that for any homogeneous ideal I one has It = (ISat)t for all 
t > 0. 
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If I is the saturated ideal of some subscheme X C 1Pn and A = R/I is the 
homogeneous coordinate ring of X then we sometimes write H(X, t) (or even 
Hx(t)) for H(A, t) and refer to this Hilbert function as the Hilbert function 
of X. 

It is easy to see that not any function can arise as the Hilbert function of 
a ring such as A above but the precise constraints on such a function seem 
obscure. Fortunately, such functions are well classified, thanks to a remarkable 
theorem of F. S. Macaulay [M]. Since we shall need some of the features of 
Macaulay's classification (and also G. Gotzmann's significant elaborations of 
Macaulay's work) we shall take some time to explain a few of their main ideas 
here. 

For the reader interested in more details on Macaulay's Theorem, we recom- 
mend either the lucid paper of R. Stanley [S] or the strikingly elementary proof 
of the theorem given by M. Green in [Gr]. Gotzmann's results are proved in 
[Go]. The reader interested in an English language proof can consult the paper 
of Green referred to above. 

We begin with a discussion of Macaulay's Theorem which describes the na- 
ture of the growth of the Hilbert function. Recall that Hilbert had already 
proved that if A is a standard graded k-algebra (i.e., a graded Noetherian k- 
algebra generated-as a k-algebra-by its homogeneous elements of degree 1) 
and if H(A, t) = at then there is a polynomial f(x) E Q[x] such that for all 
t > 0, f(t) = at. This polynomial (called the Hilbert polynomial of A) deter- 
mines the eventual growth of the Hilbert function. One of the more beautiful 
chapters of commutative algebra explains how the coefficients of this polynomial 
carry information about A. For the moment, we shall only note that 

deg f(x) = (Krull dimension A) - 1 

(where the zero polynomial will, by convention, have degree - 1). 
Macaulay explains the growth of the Hilbert function in terms of the so-called 

i-binomial expansion, so we shall first recall that notion. 

Definition-Propositon 0.1. The i-binomial expansion of the integer h (i, h > 0) 
is the unique expression 

h (mi + (Mi_i + + (mj 

where mi>mmi-I > ...>m j> 1. 

Example 0.2. The 4-binomial expansion of 85 is 

85= 84 + 53 + (3) + (2) 

We now define a collection of functions (i): Z Z Z as follows: if h E Z has 
i-binomial expansion as above, then 

) mi+l J + i (+j+l ) . 
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Definition 0.3. A sequence of nonnegative integers {ci: i > 01 is called an 
0-sequence (" 0" is for the letter "oh"), if 

co = 1 and ci+I < c(, for all i. 

Theorem 0.4 (Macaulay [M]). The following are equivalent: 
(a) {ci: i > 0} is an 0-sequence, 
(b) {ci: i > 0} is the Hilbert function of a standard graded k-algebra. 
Gotzmann's elaboration of Macaulay's Theorem is also very interesting and 

deals with the extremal situation described by Macaulay's growth condition. 
To fix the notation, let R be as above and suppose W is a subspace of Rd 

of codimension bd . Write the d-binomial expansion of bd as 

bd = M(dd + (Md- 
I 

+ +(j) 

where md > mdl > . > m I > j> 1. 
Let J be the ideal of R generated by W and write B = R/J. Then 

H(B, d) = bd and so, by Macaulay's Theorem, H(B, d + 1) = bd+ < bd) 
Thus, dimk Jd+l = diMk(RlJd) > (d+l+n) - b(d) . Hence W grows least when 
dimk Jd?l = (d+1+n) - b (d)d i.e., when bd+l = b (d) . Gotzmann's Persistence 
Theorem has a great deal to say in this latter situation. 
Theorem 0.5 (Gotzmann [Go]). Let W, J and bd be as above and suppose that 
bd+1 =bdK Then, for any 1 > 1 we have: 

bd+, Mdd 

+I 
+ (Md-I +I) + + (mi +I) 

In other words, the Hilbert Polynomial of B = R/J is 

p(X)=( Mdxd + Md-ldx(mdl- +(+ mj+X-d 

- (x+md-d)+( x+mdI -d + + + M -d 

where Md-d>md-l-d+l>.-.>mj-j>0. 
Remark 0.6. We shall have occasion, later, to make some observations about 
the Hilbert polynomial guaranteed by Gotzmann's Persistence Theorem and it 
seems worthwhile to note a few things about that polynomial here. 

Let W, J, and bd be as above. Since (X) is a polynomial of degree a 
with top coefficient 1/a! we see that the Hilbert polynomial of R/ J has degree 
md - d. So, if X is the variety defined by Jsat, then the top-dimensional 
component of X has dimension md - d. 

Now notice that md - d = mi - i for (j < i < d) if and only if mi = 
md - (d - i). In view of the restriction on the mt in the definition of the 
d-binomial expansion, we must then have 

Md-I = Md - 1; Md-2 = Mdl-I 1;*;Mi = Mi+ -1. 

So, the top coefficient of the Hilbert polynomial is (s/(md - d)!) if and only 
if md(s1) = md- (s- 1) and md-s <md -s 
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If we order all the possible Hilbert polynomials by saying that f(x) < g(x) 
if there is an integer N so that for all x0 > N we have f(xo) < g(xo), then we 
see that the least polynomial that can be the Hilbert polynomial of a subscheme 
of Pn having dimension d and degree s is 

(x) + (x+ 1)+ + (x +s- 1 

This means that for all t > 0 we must have 

bt (t+d) + (t - I + d) + + (t- (s - i) +d) 

(See Lemma 2.5 below.) o 
We have, for some time, been aware of a collection of results about the 

Hilbert function of a set of points which all have, as consequence, that the set 
of points has a distinguished subset lying on a distinguished subvariety. Rather 
than trying to state this entire collection of results in their full generality, we 
shall illustrate some of the more notable theorems with some examples. 
Example 0.7 (Castelnuovo). Let X be a set of 30 points in 1P5 with Hilbert 
function 

1 6 21 25 30 30... 
and thus having first difference 

1 5 15 4 5 0. 
An elementary result, attributed by Maroscia (see [Ma, Lemma 2.1]) to G. 

Castelnuovo, says that 6 points X lie on a P4 c P5. Our Theorem 3.3 says, 
instead, that 15 points of X lie on a p2 C p5. If we use ci to denote the values 
of the difference function, note that the passage from C3 to c4 is the maximum 
permitted by Macaulay's Theorem. 
Example 0.8 (E. D. Davis). Let X be a set of 21 points in P2 with Hilbert 
function 

1 3 6 10 14 16 18 20 21 21..., 
i.e., with first difference 

1 2 3 4 4 2 2 2 1 0. 
Then X contains a subset of 16 points lying on a conic in p2. (See [D, Theorem 
4.1].) Our Corollary 2.10 or Theorem 3.6 can be applied to this example to give 
the same result. Since Davis' theorem is the strongest possible result for P2 
our results can only capture his for p2. If we use ci to denote the values of 
the difference function, note that the passage from c5 to c6 is the maximum 
permitted by Macaulay's Theorem. 
Example 0.9 (A. V. Geramita, P. Maroscia, L. G. Roberts). Let X be a set of 
points in P3 with Hilbert function 

1 4 10 15 16 17 18 18..., 
i.e., with first difference 

1 3 6 5 1 1 1 0. 
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Then X has a subset of 7 points on a pl c p3. (See [GMR, Proposition 5.2].) 
Our Theorem 3.3 or 3.6 has this result as a special case. Again, using ci to 
denote the values of the difference function, we see that the passage from c4 to 
c5 is the maximum permitted by Macaulay's Theorem. 

Example 0.10 (P. Maroscia). Let X be a set of 26 points in F4 with Hilbert 
function 

1 5 15 18 21 24 26 26..., 
i.e., whose Hilbert function has first difference 

1 4 10 3 3 3 2 0. 

Then the Castelnuovo result referred to in Example 0.6 implies that at least 5 
points of X must lie on a 3 C p'. Maroscia [Ma, Theorem 2.3] asserts that, in 
the presence of a small amount of uniformity-in this case, no 4 of the points 
of X lie on a p2 -then at least 17 of the 26 points of X lie on a rational normal 
curve in a pl C p4. 

Unfortunately, Maroscia's arguments require the long string of 3's in the 
difference function above. 

On the other hand, our Theorem 4.2 gives that 18 of the 26 points of X must 
lie on a rational normal curve in a p3 C p4. Moreover, we get the same result 
for a set of points in F4 whose Hilbert function has first difference 

1 4 10 4 3 3 2 0 

(an example to which Maroscia's Theorem does not apply). 

Example 0.11. Let X be a set of 104 points in p3. Suppose that the Hilbert 
function of this set is 

1 4 10 20 34 48 64 79 96 100 104 104... 

and that no 4 of the points lie on a plane. 
The results we shall prove will show that exactly 89 of these points lie on a 

quadric surface and of those, either 40 or 41 (both cases are possible) lie on an 
irreducible curve of degree 4 (see Theorem 4.2). 

The remaining 104 - 89 = 15 points have exactly 13 of them lying in a 
rational normal curve in p3. 

One of our main goals in this paper is to explain how all the results illustrated 
above (and many more) can be viewed as arising from extremal behavior in 
Macaulay's Theorem. 

1. FUNDAMENTAL CONSEQUENCES OF MAXIMAL GROWTH 
OF THE HILBERT FUNCTION OF SATURATED IDEALS 

As we noted in the previous section, there are some striking consequences 
of maximal growth of the Hilbert function at some place. In this section we 
will collect some fundamental consequences of maximal growth that we have 
observed for the Hilbert function of saturated ideals. Although of interest in 
their own right, they will also play an important role in the results to follow. 

In order to simplify later discussions, we introduce the following terminology: 
Let Qt be a homogeneous ideal in the polynomial ring P and let B = P/2t. 

If bi = H(B, i) is the Hilbert function of the ring B in degree i then we say 
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B has maximal growth in degree d if bd+1 = b(d) (see the discussion before 
0.3). 

If T is a subset of the ring P we use the notation (T) to indicate the ideal 
in P generated by the set T. 

We will follow the standard notation and if F denotes a coherent sheaf 
on the scheme X we use hi(s) to denote the vector space dimension of the 
cohomology group Hi(s)). 

Lemma 1.1. Let I be a saturated ideal in the polynomial ring R = k[Xo.. ,Xn 
and let L be a linear form in R which is not a zero divisor on the ring A = R/I. 
Let J be the ideal I/LI - (I, L)/(L) in the polynomial ring S = R/(L) and 
set B = S/J. 

If A has maximal growth in degree d then B also has maximal growth in 
degree d. 
Proof. Let H(A, d) = ad = (~Md) + (Md-1) + + (mi) be the d-binomial 
expansion of ad. Then, since A has maximal growth in degree d we have 

H(A, d + 1) = ad+l= ad = (md +1 + MdI + + + m + 

Since L is not a zero divisor on A, the difference function of the Hilbert 
function of A is the Hilbert function of B. Thus, 

H(B, d + 1) = bd+1 = ad+1 - ad 

Md + 1 ) Mdd) + ***+ m( + M (j ) 

=(md )+ Md-I + .+( mj 

Now, suppose that B does not have maximal growth in degree d, i.e., 
bd+1 < (bd)(d) . Then, since 

bd+=(( d +(mdi1) d(i1 1)) 

we must have 

bd > (Mdd + Md- ) + + (mj1 ) 

Note that 

ad-I = ad- bd < ((d) + Md-I )+ + j 

((md-1) (mdI -1) I(mj-1)) 

T d - I a + ( d - 2 sp+ + t consider 

There are now two simple cases to cons'ider: 
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If j > 1: Then I- 1 > 0 and the bound above for ad_l is exactly the 
(d - 1)-binomial expansion of ad-I . By Macaulay's Theorem 0.4 we then have 

(d-1) Md-i M- -M ad < ad-l < ((d-1) I + d_ + + 

- (d) + (rd ) + + (m) ad 

which is a contradiction. 
If] = 1: Then (mi 1-1 ) = 1 and this implies that 

ad-l (Md -1)+ (md-I - )+ + (mj+-) 

By Macaulay's Theorem 0.4 we thus have 

ad < (d-1)+ ( -2)+ + ( J ) 

jMd )+ (Md-I) + ... +( + ) < ad 

which is again a contradiction. o 
Remark .1.2. Notice that, in the lemma above, the Hilbert function of the ring 
B, in degree d + 1, is the minimum permitted by a theorem of Green [Gr, 
Theorem 1]. L. Robbiano has pointed out to us that a shorter argument for 
Lemma 1.1 can be given using the calculus for binomial expansions which he 
worked out in [Ro]. We have retained our proof since it is self-contained. 
Examples 1.3. There are two examples related to Lemma 1.1 that we found of 
interest. They illustrate some of the limitations surrounding obvious extensions 
of the statement of that lemma. 

(a) Consider the set of 8 points, X, in A2 C 12, situated as follows: 

0 0 

The ideal I = Ix C k[Xo, XI, X2] = R of these points is a saturated ideal 
and A = R/I has Hilbert function 

1 3 6 7 8 8.... 
If L is the equation of a line in 12 missing the points of X, then L is not a 

zero divisor in A. So, A/LA = B has Hilbert function which is the difference 
function of the Hilbert function of A, i.e., 

1 2 3 1 1 O.... 
Clearly B has maximal growth in degree 3. Notice, however, that A does 

not have maximal growth in degree 3 since the 3-binomial expansion of 7 is 
(4) + (32) and so 7(3) = (4) + (34) = 9 > 8. 

(b) There are many saturated ideals I C k[Xo, XI, X2, X3] = R for which 
A = R/I has Hilbert function beginning 1 4 6. Since the 2-binomial expansion 
of 6 is 6 = (24) and since 6(2) = (5) = 10 there are also ideals I' in R whose 



212 ANNA BIGATTI, A. V. GERAMITA, AND J. C. MIGLIORE 

Hilbert function begins 1 4 6 10, i.e., ideals whose Hilbert function has maximal 
growth in degree 2. However, no such ideal I' can be saturated. 

To see why this is so, suppose we had such a saturated ideal I'. We would 
then be able to find a linear form L in R which was not a zero divisor on the 
ring A = RI'. Then B = A/LA would be a ring whose Hilbert function began 
1 3 2 4.... Since such a sequence is not an 0-sequence, this is impossible. 

Lemma 1.4. Let I c R = k[Xo, ... , X,] be a saturated ideal and let L E R1 
be a general linear form. Let J = I/(LI) - (I, L)/(L) c R/(L) = S. Suppose 
SI J has maximal growth in degree d. 

Let I = (I<d) and let I = rt be the saturation of the ideal I. Then I = I, 
i.e., I is a saturated ideal. 
Proof. It suffices to show that the two homogeneous ideals agree in every degree. 

Define J = (J<d). Then clearly, 

J = (I + LI)/LI I/(I n LI). 

Since L is not a zero divisor modulo I, we have LI = (L) n I. Hence, 

I nLI =I n (L) nI= (L) nI (since 7 C I). 

This gives 
J = I/((L) n I) (I + (L))/(L)- 

Now LI C (L) n I and so we have a surjection 

I/LI -+ I/(L)fnI= J. 

Thus, since L is not a zero divisor in R, 

dimli - dim 7j_ > dim 7! 

for every integer i > 1 . 
Since I is the saturation of I we have, for all t > 0, that t = It. We shall 

assume that this is the case for all t > N. 
Hence, for t > N + 1, 

LI7, = (LI)t = ((L) n I)t, 

i.e., 
dimIt1 = dim((L) n I)t. 

Since for any t whatsoever we have 

dim Jt = dimIt = dim((L) n I)t 

we obtain, for t > N + 1, 

dim Jt = dim It - dim It I = dim It - dim It_ I 

Now 7 c I (in general) but now choose F E I (degF < d). Then Fm1 C I 
for some integer 1 and m the irrelevant maximal ideal of R. Since I c I we 
thus have Fm1 C I and so F E Isat. Since I is already saturated we conclude 
that F E I. Since I and I agree in degree < d we obtain It = It for all 
t < d. 
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Since S/J has maximal growth in degree d, this implies that J has no 
minimal generator in degree d + 1 . Since L was not a zero divisor modulo I, 
this implies that I has no minimal generator in degree d + 1, i.e., Id generates 
Id+I . Thus I and I also agree in degree d + 1. 

So we have 

Id-1 = Id-1 

Id = Id 

Id+I = Id+I 

Id+2 C Id+2 

IN = IN 
IN+1 = IN+1 

Now consider the successive differences in the two columns above. We have 

dimJd = dim7d - dim Id1 = dim Id- dimdI 
dim Jd+l = dim7d+l - dimId = dim Jd+l - dimId 
dim Jd+2 < dim 7d+2- dim 7d+1 < dim 'd+2- dim Jd+, 

dim JN+1 = dim IN+1 - dim IN = dimIN+l - dim IN 

Let i be the first integer for which 

dim Ji < dim Ii - dim Ii- 1. 

Then i > d + 2 and, from the definition of i we have 

H(R/I, i -2) = H(R/I, i -2) 
H(R/II, i -1) = H(R/II, i -1) 

H(R/I, i) > H(R/I,~ i) 

H(R/I, N) = H(R/I, N) 

H(R/I, N + 1) = H(R/I, N + 1) 
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Thus, 
AH(R/I, i- 1) = AH(R/I, i- 1) = H(S/J, i - 1) 

AH(R/I, i) < H(S/J, i) 

AH(R/I, N+ 1) = H(S/J, N+ 1) 
AH(R/I, N + 2) = H(S/J, N + 2) 

Since i is a saturated ideal and L is not a zero divisor modulo I, we 
have that AH(R/I, -) is the Hilbert function of the quotient of the ring S by 
the ideal (I, L)/(L). But, by construction, S/J has maximal growth (by the 
Gotzmann Persistence Theorem) for all j > d. So, in particular, this is true 
for all j > i - 1 . But AH(R/I, -) falls behind this maximal growth in degree 
i and hence can never catch up! The fact that it does catch up in degree N + 1 
is the required contradiction. 

Thus, 
dimIt - dim ItI = dim It - dim ItI 

for every t. Since I and I agree in low degrees, this implies that they agree 
in all degrees, as we wanted to show. 0 

There is more than can be said about the ideal I = I of Lemma 1.4. To 
explain this, recall a definition originally due to Mumford [Mu]. 

A coherent sheaf 9 on pn is said to be s-regular if Hq(-(s - q)) = 0 for 
all q > 0. The least integer r for which 9 is r-regular is called the regularity 
of S. 

In his paper [Go], Gotzmann found a very strong connection between reg- 
ularity and the Hilbert polynomial. We recall Gotzmann's theorem here. (An 
English language proof, which slightly improves Gotzmann's theorem, can be 
found in [Gr].) 
Theorem 1.5 (Gotzmann Regularity Theorem). Any graded ideal I C R = 
k[Xo, ... , Xn] has Hilbert polynomial which can be uniquely written in theform 

p() (x + ala) + (x + a2 - + + x+ar- (r- 

where a, > a2 >_ * > ar > 0. Moreover, if JY is the ideal sheaf of I then JY 
is r-regular. 

We apply this result in the following proposition. 
Proposition 1.6. Let I be a saturated ideal in R = k[Xo, ..., Xn ] and suppose 
that L is a linear form which is not a zero divisor on A = RI . Denote by J 
the ideal I/LI - (I, L)/(L) in the polynomial ring S = R/L and suppose that 
the Hilbert function of S/ J has maximal growth in degree d . 

Let 7 = (I<d) and let JY be the sheafification of 7. Then JY is d-regular. 
Proof. We need to show that hi(Y(t - i)) = 0 for all t > d. We begin by 
showing that this is true for i = 1 . 



EXTREMAL BEHAVIOR IN A THEOREM OF MACAULAY 215 

First note that from Lemma 1.4 we have that I is a saturated ideal. Thus 
(for a general linear form L) we can also assume that L is not a zero divisor 
on the ring R/I. Let J be the ideal I/LIz (I, L)/(L) in the ring S. 

By definition, J and J both agree in degrees < d since that is the case for 
I and I. Since I is generated in degree < d and J is a quotient of I we 
have that J = (J<d) = (J<d) - 

Note also that since S/J has maximal growth in degree d we have S, Jd = 

Jd+i So, Jd+i = Jd+I also. 
Claim. (j)t = ((j)sat)t for all t > d. 
Proof. J certainly agrees with its saturation for all t sufficiently large. So, for 
definiteness, assume that this happens for all t > N. Then we have 

Jd = Jd c ((J)sat)d C Sd 

Jd+i d+1 C ((J)Sat)d+l C Sd+1 

JN = ((J) sat)N 

Now S/J has maximal growth in degree d, so, by construction, S/J has 
maximal growth in degree > d thanks to the Gotzmann Persistence Theorem. 

But, if for some i, d < i < N we have 
JiC ((J) at)i 

SI-sat) then the Hilbert function of S/(J ) would fall behind that of S/J. Since 
the latter Hilbert function is growing maximally the former can never catch up, 
although it does in degree > N. That contradiction establishes the claim. 

Let .9' be the sheafification of the ideal J. If we shift the exact sequence 
of sheaves 

O- ,(-1) J - 0 
by t and take cohomology we have 

O -+7 I I- t - ((7) sat)t H 
I 

Pl(S) (t - I H HP>) (t)- 

For t > d the map 
It 

- ((-J) It)t 

is, in view of the claim above, a surjection. Hence, the map 
HI (>(t - 1) -- H (>) (t) 

is an inclusion for all t > d. Since, for t > 0 we must have HI( )(t) = 0 
this completes the proof for i = 1 . 

To prove the required vanishings of the higher cohomology groups of JY we 
pass to the ideal J = (J<d) . 

Suppose that H(S/J, d) = bd and write the d-binomial expansion of bd as 

bd= (Md)+ Md- I ' j=d-r. 
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From Gotzmann's Persistence and Regularity Theorems we can conclude that 
,9 is r-regular (see 0.5 for the appropriate expression for the Hilbert function 
for J). Since r < d we conclude that 9 is also d-regular. 

We now show that hi(JY(t - i)) = 0 for all t > d and i > 1. As before, we 
consider the exact sequence of sheaves 

0 -+,(- I) ,+ J, ,0. 

If we twist the exact sequence above by t - i + 1 and take cohomology we get 
Hi-l(S97(t - i + 1)) -, HiJ(J(t - i)) -4 HiP(.J(t - i + 1)). 

Since J is d-regular we obtain Hi-1(S9(t - i + 1)) = 0 for all t > d. 
Thus, we have an inclusion Hi(JY(t - i)) - HI(J(t - i + 1)) for all t > d. 
Since, for all s > 0 we have Hi(f(s)) = 0, that completes the proof of the 
proposition. 0 

Remark 1.7. Notice that J = I/LI and that L is not a zero divisor modulo 
I. Nevertheless, we cannot conclude (and it is not, in general, the case) that 
J is a saturated ideal. Thus, it is noteworthy that with the maximal growth 
assumption we can conclude a regularity result about I from a regularity result 
about the saturation of J. This in spite of the fact that we have only very 
partial information about the Hilbert function of I. 

However, the key fact here is that J agrees with its saturation in all degrees 
> d . This was at the heart of the results above. If we know this fact, for reasons 
other than maximal growth, then similar conclusions can be drawn. This idea 
is applied in Corollary 3.7. 

2. THE GREATEST COMMON DIVISOR OF A COMPONENT 
OF A HOMOGENEOUS IDEAL 

In this section we will generalize some results of E. Davis [D]. Our goal is to 
describe what happens when a homogeneous component of the saturated ideal 
of a scheme has a greatest common divisor (GCD), and especially to understand 
this in the case where there is maximal growth of the Hilbert function or at least 
when the Hilbert function has a certain special value. We will be especially 
interested in the case of zeroschemes in projective space. (Davis' situation was 
for codimension two Cohen-Macaulay subschemes in pn.) 

We first define a collection of functions on the nonnegative integers, whose 
values are again nonnegative integers. For r = 2 these functions were also 
studied by Raciti [Ra]. 
Definition 2.1. For r > 1, k > 1, and x > k, fr, k (X) = (X+r) (x-k+r) .Also, 
fr,o(x) = 0 for all r and all x. For x > k this is the Hilbert polynomial of a 
degree k hypersurface in pr. 
Remark 2.2. We observe that for any choice of k, < k2 < x, fr,k,(x) < 

fr,k2(X). In particular, fr,k(X) > 0 for all r > 1, k > 1, and x > k as 
noted above. 
Proposition 2.3. Let Iz c R = k[Xo, ... , Xr+I] be the saturated ideal of some 
scheme Z (with no assumption on the dimension) and assume that (Iz)d has a 
GCD, F, of degree k. Let Z1 be the subscheme defined by Iz, = [Iz + (F)]"t 
and Z2 the subscheme defined by [Iz: F]. Then 
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(a) For any i < d, [Iz + (F)]i = (F)i. However, it is not necessarily equal to 
[Izii i 

(b) [Iz: F] = Iz2- 
(c) For t < d, H(Z2, t- k) = H(Z, t)-fr+l,k(t). 
(d) If Z is reduced then so is F. 

Proof. (d) is clear. (a) follows from the fact that F is a factor of every element 
of (Iz)i for i <d. The fact that [Iz + (F)]i is not necessarily equal to [Iz,]i 
is illustrated in Example 2.1 1. (b) says simply that [Iz: F] is saturated. This 
is an easy exercise-it follows from the fact that Iz itself is saturated. 

For (c), observe that 

Iz_ _ Iz Iz + (F) 
F * [Iz:F] (F) n Iz (F) 

We thus have an exact sequence of graded modules 

xFIZ__ I +(F) O 
-- [Iz : F](-k) xFI z+ (F) O , 

and combining this with the fact that [Iz: F] = Iz2 we get 
?~~~x 

IZ 
(-k IZ + Z(F()? 

(F) 
The last term is zero in degree < d by (a), so 

dim(Iz2)t-k = dim(Iz)t 

for all t < d. We rewrite this as 
(t-k+r+l) -dim(Iz2)1tk 

(t+r+l) -dim(Iz)t + (t-k+r+1) I (t+r+ ) 

for t < d. That is, 

H(Z2 , t -k) =H(Z, t) -[(++1_(tk r 1) 

for all t < d, as claimed. 0 

Theorem 2.4. Let Iz c R = k[Xo, ..., Xr+i] be the saturated ideal of some 
scheme Z (with no assumption on the dimension) and assume that (Iz)d has 
a GCD, F, of degree k. Assume further that AH(Z, d) = fr,k(d). Then 

(a) Iz + (F) = Iz, and [Iz: F] = Iz2 
(b) 

AH(Z2, t- k)= f AH(Z, t) - fr,k(t), for t < d; 
10, for t >?d. 

In particular, dim Z2 = 0. 
(c) 

AH(Zi, t) =fr,k (t) for t < d; AH(Zlt 
AH={ 

4 
t), for t >d. 
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(d) If Z is reduced then so is F. 
Proof. We have already seen (d) and the second half of (a). (b) follows immedi- 
ately from Proposition 2.3 since then AH(Z2, d-k) = 0 and so AH(Z2, t) = 0 
for all t > d - k . This says that Z2 is a zeroscheme, and hence it follows from 
AH(Z2, d - k) = 0 that hI(Jz2(t)) = 0 for all t > d -k- 1. Now, we have 
an exact sequence of modules 

o -, Iz n (F) -Iz @ (F) -- Iz + (F) -- 0, 

and since F * IZ2 = F * [Iz: F] =Iz n (F) this gives 

o )_ IZ2(-k) _4' IZ @ (F) -- Iz + (F) -- 0. 

For t > d - 1 we have seen that hl(Jrz2(t - k)) = 0, so we can sheafify the 
above sequence, twist by t > d - 1 and take cohomology to get a short exact 
sequence 

0 -? Iz2(-k)t -- [Iz @ (F)]t -- [H2(Iz + (F))]t -) 0. 
(The rightmost term is just the degree t component of Iz,.) In particular, 
comparing this sequence with the one preceding it, we get that Iz + (F) agrees 
with Iz1 in degrees > d - 1. In particular, 

h0(Yz, (t)) = (t - k +r + 1)+ ho(Jz(t)) - h0(z'2(t-k)) for t>d-1. 

Subtracting ( t+r+ 1) from both sides and simplifying gives 
H(Z1, t) = H(Z, t) - H(Z2, t - k) for t > d - 1. 

Then taking first difference gives that for t > d we have 

AH(Z1, t) = AH(Z, t) - AH(Z2, t - k) = AH(Z, t). 

In particular, 

AH(Z1 d) (d+r)_ (d-k+r) fr,k(d). 

We want to show that Iz1 = Iz + (F), and we have seen above that it is true 
in degree > d - 1. Furthermore we have seen that in degree < d we have 
Iz + (F) = (F) . What we claim is that in fact Iz1 = (F) = [Iz + (F)] in degree 
< d. This will prove the remaining parts of (a) and (c), and complete the proof 
of the theorem. 

Certainly we have an inclusion (F) C Iz1 in all degrees, and we have just seen 
that they are equal in degrees d - 1 and d . Suppose that they are not equal for 
some degree i < d - 2. This means that there is some element G E (Iz1 )i which 
does not have F as a factor. But then for a general linear form L, G * Ld-i 
is an element of (Iz1 )d which does not have F as a factor. Contradiction. 0 

Our next results illustrate again the power of maximal growth of the Hilbert 
function: it can force the existence of a GCD and determine its degree. (And 
then the above results apply.) We first make an observation which will be useful 
for much of the rest of the section. (In the case r = 2 it was essentially observed 
by Green in [Gr], immediately before Theorem 4.) 
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Lemma 2.5. Let d > k > O. Then 

fr, (d) (d+r) - (d-k+r) 

(d +r- 1)+(d +r-2) + + (d +r-k) 

= (d +r - )+ (d +r - 2) ++(d +r - k) 

Proof. For convenience let A = (d+r) , B = (d-k+r) and C1 = (id+r-,) (for 
1 < i < k). We first want to show that B = A - Cl - C2- *-Ck . Just observe 
that A - Cl = (d+rj I), A - Cl - C2 = (d+r-2), etc. The second part of the 
lemma follows immediately from the first. O 
Definition 2.6. Let I c S = k[Xo,..., Xr] be a homogeneous ideal. Assume 
that Id :? 0, so H(S/I, d) < (d+r) . The potential GCD of Id is 

max{klfr,k(d) < H(S/I, d)}. 
(Note that this makes sense because of Remark 2.2 and the definition of fr, k.) 

Proposition 2.7. Let I c S = kXo, ... , Xr] be an arbitrary homogeneous ideal 
and let d be such that Id # 0. Assume that 0 < k = potential GCD of Id . 
Assume further that S/I has maximal growth in degree d. Then both Id and 
Id+, have a GCD, F, of degree k. 
Proof. We know that H(S/I, d) < (d+r) - (d-(k+l)+r) = fr,k+l(d). (If d> k 
this is by definition of potential GCD; if d = k then fr, k+ l(d) is not defined, 
but this inequality follows from the assumption that Id :$ 0.) 

By Lemma 2.5, the first k terms of fr,k(d) and fr,k+l (d) are equal. Since 
fr,k(d) < H(S/I, d) < fr,k+l(d), we get 

H(S/II d)= ( d )+ (d r- )+'''+ (d +-k+ 

+ (d k) + (lower terms). 

Observe that c < d + r - (k + 1) since H(S/I, d) < (d+r) - (d-(k+l)+r) (use 
Lemma 2.5 again). So 

H(S/I, d)= (d+r- l) + (d + r - 2 )+ + (d + r - k) 

+ (erms ( .)with i < r -1 

Let V be the scheme defined by (I<d) . As in Lemma 1.4, let I = (I<d) = Iv . 
By the Gotzmann Persistence Theorem, 

H(S/I, t) =(t+r 1 l)+(t+r 12) + + (t+rk) + (lower terms) 

is the Hilbert polynomial of S/Iv . It follows that dim V = r- 1 and deg V = k 
as claimed. O 
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Interestingly, if the values of both H(S/I, d) and H(S/I., d + 1) fall exactly 
on one of the curves Jr,k(x) then we can say more: 

Corollary 2.8. Let I c S be an ideal, S =k[Xo, ... , Xj]. Assume that 

H(S/I, d) = (d+r) - (d-k+r) 

H(S/I, d +1) = d+l1 d+l-k J H(S/I d+ 1) = d + I +r d + I - k +r 

where d > k. Then Id = (F)d and Id+, = (F)d+1 for some F E Sk. 

Proof. By Lemma 2.5, 

H(S/II,d) = d + r I + d + r 2 + + d - k 

d+ 

d 

-\(d+ d+- 
k 

I 

H(S/I, d + 1) = d + ) + d + r + + d + I + r k) 
These are the d-binomial expansion of (S/I, d) and the (d + 1)-binomial 
expansion of H(S/I, d + 1), respectively, and by Macaulay's Theorem the 
value in degree d + 1 represents the maximum possible growth of the Hilbert 
function given the value in degree d. 

As above, let V be the scheme defined by the saturated ideal (Lemma 1.4) 
I = (I<d) (or, equivalently, by (I<d+l) since maximal growth in degree d for 
an ideal I implies that I does not have a minimal generator in degree d + 1) . 
We have seen that V has dimension r - 1 and degree k, but we have to 
eliminate the possibility of higher codimensional components. Now we get that 
the Hilbert polynomial of S/Iv is precisely 

H(S/Iv, t t (+r r - I t + (tr-2) 
t + (tr-k) 

by the Gotzmann Persistence Theorem. Let F be a (not necessarily irreducible) 
homogeneous polynomial of degree k defining the dimension r - 1 part of 
V. We have that Iv C (F). In particular, Id = (IV)d C (F)d- But since 
H(S/(F), d) - (d+r) _ (ddk+r) (and similarly for H(S/(F), d + 1)) we get 
equalities: Id = (IV)d = (F)d and Id+1 = (IV)d+l = (F)d+1. (The fact that 
Iv is generated in degree < k also follows easily from Gotzmann's Regularity 
Theorem, once we know the Hilbert polynomial.) 0 

Corollary 2.9. Let Iz be the saturated ideal of a closed subscheme Z of Pr+l . 
Assume that AH(Z, d) has potential GCD = k > 1 and maximal growth in 
degree d. Then the elements of (Iz)d and (Iz)d+l have a GCD of degree k. 
(Hence Proposition 2.3 applies.) 
Proof. As usual we let J denote the ideal (I, + (L))/(L) where L is a general 
linear form. By Proposition 2.7, J has a GCD of degree k in degrees d and 
d + 1; hence the same holds for Iz . o 

As before, if AH(Z, d) = fr,k(d) and it is known that there is a GCD, or in 
particular if AH(Z, d) and AH(Z, d + 1) both lie on the curve fr ,k(X) then 
we can say more: 
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Corollary 2.10. If AH(Z, d) = (d+r) _ (d-jk+r) and AH(Z, d + 1) = (d+llr) 
(d.+l-k+r) then (Iz)d and (Iz)d+l have a GCD of degree k. Hence Theo- 
rem 2.4 applies and the Hilbert functions of both Z1 and Z2 are completely 
determined. 
Proof. Immediate from Corollary 2.8. 0 

These results are related to work of Davis in the following sense. In [DI 
Theorem 4.1, Davis considers arithmetically Cohen-Macaulay codimension two 
schemes Z and the Hilbert function of the Artinian reduction of the coordinate 
ring of Z. If a component of the ideal of Z has a GCD of degree d and if 
the value of the Hilbert function of the Artinian reduction is also d then he 
reaches a conclusion similar to that in our Theorem 2.4. 

In the case of points in p2, this result is exactly ours. In higher dimension 
and/or codimension, however, we make the following observations. First, we 
do not assume that Z is arithmetically Cohen-Macaulay or of codimension 
two. (In private conversation with the second author he claims that the codi- 
mension two assumption is not necessary for his results, properly reformulated. 
However, he asserts that arithmetically Cohen-Macauly is necessary.) 

Second, even if Z is arithmetically Cohen-Macaulay and has codimension 
two, the hypotheses of the theorems are still different. Davis passes to the Ar- 
tinian reduction (i.e., considering restriction to a general line) while we consider 
the first difference of the Hilbert function (i.e., restricting to a general hyper- 
plane). 

For the remainder of this section, Z C P3 will be a zeroscheme with saturated 
ideal Iz c R = k[Xo, ... , X3]. Notice that if Z is reduced and (Iz)d has a 
GCD, and if Z, and Z2 are as defined in Proposition 2.3, then Z, is the subset 
of points lying on the GCD and Z2 is the subset lying off the GCD, and Z = 
Z1 U Z2 . Let L be a general linear form; without loss of generality set L = X3 . 
Let S = k[Xo, X1, X2] = R/(L). Let J = Iz/(L.Iz) = (Iz+(L))/(L) C S. Let 
H(Z, -) be the Hilbert function of R/Iz. Since Z is arithmetically Cohen- 
Macaulay, the Hlilbert function of S/ J is exactly AH(Z, -) and it makes sense 
to ask if this Hilbert function has maximal growth in a given degree d. (See 
1.1 for the relation between maximal growth for R/Iz and for S/J in a given 
degree.) 

Example 2.11. Let Z C P3 be a set of points whose Hilbert function has first 
difference 

1 3 4 5 0. 
Here the potential GCD of (IZ)2 is k = 1 and the growth in degree 2 is 
maximal, so by Proposition 2.7, (IZ)2 and (Iz)3 have a GCD of degree 1. 
Let Z, be the subset on this plane and Z2 the subset off the plane. Then by 
Proposition 2.3 (c) (taking the first difference of that statement and applying it 
to d = 3), the Hilbert function of Z2 can be computed by 

t: 0 1 2 3 
AH(Z, t): 1 3 4 5 

Af3,1(t): 1 2 3 4 
AH(Z2, -): 0 1 1 1 
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That is, Z2 consists of at least 3 points on a line. It cannot have more than 4 
points on a line since the Hilbert function of Z does not allow more than 4 
points on a line. Thus Z1 consists of either 9 or 10 points on a plane. Both 
are possible. Each of the following examples gives this Hilbert function: 
Case 1. Choose a line A and a plane A not containing A. Let Z1 be a general 
set of 10 points on A and Z2 a general set of 3 points on 1A. Any cubic surface 
containing Z and not containing A as a component would restrict to a cubic 
curve in A containing Z1 . 
Case 2. Choose a line A and a plane A not containing A. Let P be the 
intersection point of A and Al. Let Z1 be a general set of 9 points on A 
and Z2 a general set of 4 points on A. Any cubic surface containing Z must 
contain A and hence P. So it restricts to a cubic curve in A containing the 10 
points Z u {P} . 

This illustrates the fact that one cannot completely specify the Hilbert func- 
tions of Z1 and Z2 given only the hypotheses of Proposition 2.3. Thus a result 
like Theorem 2.4 requires the extra assumption. 

Case 2 also illustrates the remark in Proposition 2.3 that [Iz + (F)]i = (F)i 
is not necessarily equal to [Izj]i for i < d. Indeed, in our situation, for i = 3 
the former has dimension 10 while the latter has dimension 1 1. 

We remark that, from the techniques we have developed, one can pick up 
the line A in a slightly different way. Let I = (Iz)<3 be the saturated (by 
Lemma 1.4) ideal of a scheme V. Then the Hilbert polynomial of the general 
hyperplane section of V is (xtl) + 1, so V consists of a plane, a line plus 
possibly finitely many points. (But our analysis above rules out the extra points.) 
Example 2.12. We would like to describe the functions f,, k in P3 . In this case 
r = 2 (since we are always looking at the quotient ring S) and one can check 
that 

f2,k(x)=kx- k2-3k =kx- (k - ) + 

for x > k . (This is the Hilbert polynomial of a plane curve of degree k, as one 
would expect.) These are exactly the equations of the lines studied by Raciti in 
[Ra]. These lines (if we extend them to the left) are all tangent to the parabola 
Y= IX 2+ 3X+ 1 y1~~~2~ 

3. ZEROSCHEMES 

In this section Z will denote a finite set of points in pr+l with saturated 
ideal Iz c R = k[Xo, ... , Xr+ 1]. Let L be a general linear form; without 
loss of generality set L = Xr+i . Let S = k[Xo ... , Xr] = R/(L). Let J = 
Izl(L * Iz) = (Iz + (L))/(L) c S. Let H(Z, -) be the Hilbert function of 
R/Iz . Since Z is arithmetically Cohen-Macaulay, the Hilbert function of S/ J 
is exactly AH(Z, -), and it makes sense to ask if this latter Hilbert function 
has maximal growth in a given degree d. (See Lemma 1.1 for the relation 
between maximal growth for R/Iz and for S/J in a given degree.) 

In ?2 we saw how certain kinds of maximal growth of the Hilbert function 
AH(Z, -) can force a large subset Z1 of Z to lie on a hypersurface; in fact, 
one can often say exactly how large Z1 is. In many cases one can also say quite 
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a bit about the points Z2 of Z off the hypersurface, sometimes getting all the 
values of the Hilbert function of that set as well. 

Our object in this section is to show how maximal growth of the Hilbert 
function can also be used to force many points of Z to lie on a recognizable 
subvariety of higher codimension, and again allow us to say how many such 
points there are (or at least give a very strong lower bound). We will improve 
these results even further in the next section when we assume some uniformity 
about the points of Z. 

We start with a result which can be shown to be equivalent to Theorem 3 
of [Gr]. However, we state it in the context of maximal growth of the Hilbert 
function, and our proof is completely different from that of [Gr]. 
Lemma 3.1. Let I c S be an ideal satisfying H(S/I, d) = (d,7f) and 
H(S/I, d + 1) = (d+l+Al,). Then Id is the degree d component of the satu- 
rated ideal of an m-dimensional linear space in pr (and similarly for Id+,). 
Proof. The given values of the Hilbert function represent maximal growth in 
degree d. Let V be the scheme defined by the saturated (Lemma 1.4) ideal I = 
(<d) . The Hilbert polynomial of V is (t7) so deg V = 1 and dim V = m. 
As in Corollary 2.8, we have to make sure there are no higher codimensional 
components. Let A be the dimension m component. If V has any higher 
codimensional component then Iv C IA (where this is a strict inclusion). Hence 
for t > 0, (+m) = H(S/Iv, t) > H(S/IA, t) = (tM) . Contradication. o 

The same proof, combined with Corollary 2.8, gives our analog of [Gr, Theo- 
rem 4], but stated more generally to allow higher dimension, and stated in terms 
of maximal growth of the Hilbert function. This will be used in Corollary 3.10. 
Corollary 3.2. Let I c S be an ideal satisfying H(S/I, d) = (d+dmf) - (d-dk+km) 

and H(S/I, d + 1) = (d+ lm) _ (d+i k+m), with m > 2. Then Id is the degree 
d component of the saturated ideal of a hypersurface of degree k inside a Pm of 
pr That is, Id is the degree d component of the saturated ideal of the complete 
intersection of a homogeneous polynomial of degree k and r - m linear forms. 
Proof. The point is that, as in Corollary 2.8, this is maximal growth. The 
Hilbert polynomial one then obtains is the smallest possible for a variety of 
dimension m - 1 and degree k. (See Remark 0.6.) 0 

Although we are interested in zeroschemes in this section, we prove the next 
theorem in greater generality to give an indication of how our techniques extend 
beyond points. 
Theorem 3.3. Let Y be a closed, reduced subscheme of pr+1 of dimension > 0, 
with the first difference of the Hilbert function satisfying AH(Y, d) = (d+m -1) 

and AH(Y, d + 1) = (d7+m). Then: 
(a) Y is the disjoint union of a scheme Y1 and a scheme Y2, where Y1 lies 

in a Pm = A and Y2 is a finite set of points. 
(b) The first difference of the Hilbert function of Yi is 

AH(Y1, t) { AH(A,t) if t d+1; 
AH(Y,~t), if t?>d. 
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Proof. (Observe that in particular we are claiming that the values of AH(A, t) 
and AH(Y, t) agree in degrees d and d + 1.) Let L be a general linear form 
and let J = (Iy + (L))/(L). As usual, J is an ideal in the quotient ring S and 
H(S/J, t) = AH(Y, t) for all t. The condition on AH(Y, d) and AH(Y, d + 1) 
is the maximal growth condition of Lemma 3.1 (with m - 1 instead of m), 
so Jd is the degree d component of the ideal of an (m - 1)-plane A c Pr. 
Hence (IY)<d defines a scheme V with support consisting of an m-plane A 
and a finite set of points. (If there were components of dimension > 1 other 
than A, they would be picked up in the general hyperplane section.) 

Let Y1 be the subscheme of Y lying on A and Y2 the "residual" subscheme. 
This makes sense since Y is reduced. Since Y C V, the observations in the 
previous paragraph imply that Y2 is a finite set of points. This proves (a). 
Let W be the subscheme of V supported on Y2 and X the rest. Note that 
W n X = 0 and Iw n Ix = Iv . We thus have an exact sequence of modules 

O-* Iv -+Iw EIx -* Iw+Ix -?0. 

Sheafify and twist by t > d - 1 . When we take cohomology we get 

HI (J3v(t)) -* H1 (-Jw(t)) e H1 (A,x(t)) -- H' (Mpr+i (t)) 

so by Proposition 1.6 we get that hI(.Aw(t)) = 0 for all t > d - 1 . But Y2 C W 
and both are zeroschemes, so we get hI (AJyj2 (t)) = 0 for all t > d - 1 . Therefore 
AH(Y2, t) = 0 for all t > d. 

Now let L be a linear form vanishing on A but not on any point of Y2. As 
in ?2 we have Iy n (L) = [Iy: L] * L = Iy2 * L. Hence we have an exact sequence 

O?IY2(-l) 
XL 

Iy E3 (L)-* Iy + (L) --*O. 
Sheafifying, twisting by t > d and taking cohomology, we get 

? - (IY2)t-1 - (IY)t e (L)t -- (Iz,)t -- 0 

As in the proof of Theorem 2.4, this gives H(Y1, t) = H(Y, t) - H(Y2, t - 1) 
for all t > d . Thus AH(Y1, t) = AH(Y, t) - AH(Y2, t - 1) for all t > d + I . 
We conclude that AH(Y1, d + 1) = (d+m) = AH(Y, d + 1) = AH(A, d + 1) 
and in fact AH(Y1, t) = AH(Y, t) for all t > d + 2 as well. This proves the 
second half of (b), and we now prove the first half. 

We claim that Iy, and IA agree in degree < d + 1 . Certainly IA C Iy,, SO 
H(Y1, t) < H(A, t) for all t. If H(Yj, t) < H(A, t) for any t < d + I, let i 
be the minimum such. i cannot be d + 1 because otherwise it contradicts the 
fact that AH(Y1, d + 1) = AH(A, d + 1) (since by definition of i the Hilbert 
functions agree in degree < i) . And if i < d + 1 then the first difference of the 
Hilbert function of Y1 can never catch up with that of A since the latter has 
maximal growth for all degrees > 1 . This proves the first half of (b). 

For the last part of the theorem, consider the exact sequence 

0 Iy nIA A Iy E IA IY + IA - 0. 

Sheafify and twist by d - 1. To prove the last part of the theorem, then, it is 
enough to show that hI(Iy n IA(d - 1)) = hI(A_nY2(d - 1)) = 0. Consider the 
exact sequence 

0 --*JVV `AUY2 * JAUY2/YV -*0. 
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The last sheaf is supported on a zero-dimensional scheme, and we have already 
seen that hI(J'v(d - 1)) = 0. The result then follows. 0 
Corollary 3.4. Let Z c pr+l be a reduced set of points with AH(Z, d) = 
(d+ -1) and AH(Z, d + 1) = ('d++j). Then Z contains a subset Z, lying 
on a IPm = A, and the first difference of the Hilbert function of Z1 is the se- 
quence 

1 (m ... .H(dZ+ d ) (c j ) AHz, d + 2) 

(In particular, Z contains at least (m+d+l) points on a lP?m.) o 
If we let m = 1, m as in Corollary 3.4, we obtain Proposition 5.2 of [GMR]. 

For d as in the corollary and for m = 1 the Hilbert function AH(Z, t) is 
completely determined for all t > d by the cardinality of Z. This is not the 
case for m > 1. Thus our description of the Hilbert function of Z, beyond 
the point of maximal growth represents a novel ingredient not present in the 
case m = 1. 

In ?2 we generalized several theorems of Davis [D] by viewing those results 
as statements saying that maximal growth of a certain kind forces the existence 
of a GCD. For example, suppose the first difference of the Hilbert function of 
a set, Z, of points in p2 has flat growth from degree d to d + 1 . Then this is 
maximal growth and hence it forces the components of the ideal in those two 
degrees to have a GCD. Furthermore, it forces a large subset Z, of Z to lie 
on that GCD. Finally, the first difference of the Hilbert function of Z1 agrees 
with that of the GCD up to degree d + 1 and it agrees with that of Z past 
d + 1. 

However, hypersurfaces in p2 are also curves, so Davis' results can be viewed 
as forcing points in IpE2 to lie on a curve of a certain degree. In higher projective 
space there is a result of Maroscia along similar lines [Ma, Theorem 2.3(2)]. 
This result requires that the points of Z c Pn satisfy a very weak general 
position assumption, and that the first difference of the Hilbert function take 
the value n - h (h > 1) in each of n - 1 consecutive degrees. The conclusion 
is that Z has a large subset Z1 lying on a rational normal curve in a linear 
subspace pn-h of pn. 

We will generalize this result in this section and in the next. For now we 
require only that Z be a reduced set of points and that the first difference of 
the Hilbert function take the same value s in each of two consecutive degrees 
d and d + 1; our only constraints on the value of s are that it be allowed 
in degree d by Macaulay's growth condition, and that d > s so that we have 
maximal growth. (Notice that we require only two degrees with this value.) 
Our result will be that Z has a large subset Z1 lying on a reduced curve C 
of degree s, and that the first difference of the Hilbert function of Z1 agrees 
with that of C up to degree d + 1 and with that of Z afterwards. In the next 
section we will show that under various general position assumptions we can 
also show that C is irreducible. 
Remark 3.5. In the proof of the next result we will need the following facts 
from [GLP]. (We are grateful to E. Ballico for pointing out (2) to us.) 

(1) (Theorem 1.1) If X C Pn is a reduced irreducible nondegenerate curve 
of degree d then ,Yx is (d + 2 - n)-regular. 
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(2) (Remark (1), p. 497) Let X C Pn be a reduced but not necessarily irre- 
ducible curve. Suppose X has irreducible components Xi of degree di, and 
that Xi spans a pni C Pn . Set 

fdi+2-ni, ifdi>2; 
Mi = 

, I Iif di = 1 (i.e., if Xi is a line). 
Then X is (Z mi)-regular. 
In the following theorem, "variety" does not necessarily imply "irreducible." 

Theorem 3.6. Let Y c pr+I be a reduced scheme of any dimension. Assume 
that for some d, AH(Y, d) = AH(Y, d + 1) = s, where d > s . Then 

(a) dim Y < 1. 
(b) ((IY)<d) is the saturated ideal of a curve V of degree s (not necessarily 

unmixed). Furthermore, V is reduced. 
Let C be the unmixed one-dimensional component of the reduced curve in 

(b). Let Y1 be the subvariety of Y on C and Y2 the "residual" subvariety. 
(C) ((IY)<d) =IC 
(d) dim Y2 = 0 and H(Y, t) = H(Y, t) - IY21 for all t > d - 1. 
(e) 

AH(Y1,~ t)=f AH(C, t), fort?d+l1; 
{ AH(Y, t), for t > d. 

In particular, AH(Y1, t) = s for all s < t < d + 1 . 
Proof. (Observe that in particular we are claiming that the values of AH(C, t), 
and AH(Y, t) agree in degrees d and d + 1.) As usual let J = (Iy + (L))/(L) 
for a general linear form L. Notice that the condition d > s means that the 
d-binomial expansion of s is (d) + ... + (d-,+i) ' and so we have maximal 
growth in degree d (for the ring S/IJ). This also shows that AH(Y, t) < s for 
all t> d. 

Now, Jd is the degree d part of the saturated ideal of a zeroscheme of 
degree s in pr+1 (by maximal growth and Gotzmann's Persistence Theorem 
giving the Hilbert polynomial, and a "catch up" argument as in Lemma 1.4). 
Hence (IY)<d is the saturated ideal (Lemma 1.4) of a scheme V in pr+1 having 
an unmixed one-dimensional component which is a curve C of degree s. (C 
is not necessarily reduced or irreducible, a priori, so we cannot directly apply 
Remark 3.5 to C.) This proves (a) and the first half of (b). 

Let Y1 be the subvariety of Y lying on C and Y2 the remaining subvariety 
of Y. (By the way we have defined C, dim Y2 = 0 trivially-this is the 
first part of (d).) Then V is supported on C, Y2 and possibly some other 
"ghost" points. As in the proof of Theorem 3.3, let W be the subscheme of 
V supported on Y2 and let X be the residual scheme. (This is well-defined 
by [ZS]: see the remark following Theorem 8, Chapter IV, ?5.) Notice that we 
again have Iw n Ix = Iv and W n X = 0. Then the same proof as in Theorem 
3.3 gives hI(Jly2(t)) = 0 for all t > d - 1 and so AH(Y2, t) = 0 for all t > d . 

Consider the exact sequence 

0 IV * ICUGY2 ICUY2 -, 0 
Iv 

(respectively, the same sequence with C u Y2 replaced by C). Again, the 
rightmost term is supported on a zeroscheme, so after sheafifying, twisting by 
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t > d - 1 and taking cohomology we get (by Proposition 1.6) 

(1')~ ~ ~h h(IC u y2(t)) = 0 for all t > d - 1, 
(1")~ ~ ~~~ h(IC (t)) =0 for all t > d- 1. 

We also have an exact sequence 

0 -o Iy n Ic - Iy e Ic yI + Ic -4 0. 
If we sheafify this, twist by t > d - 1 and take cohomology, we get (by (1')) 
the short exact sequence 

0 -? (ICUY2)t -- (iY)t e (IC)t - (IYI )t -> 0. 

Hence for t > d - 1 we have 

(2) H(C u Y2, t) = H(Y, t) + H(C, t) - H(Y1, t). 
On the other hand, from the exact sequence 

0 4Cuy2 Me,pr+1 CUY2 0 

we get from (1') that H(C U Y2 t) = h0(&c(t)) + IY21 for t > d - 1. From a 
similar sequence replacing C U Y2 by C, we get from (1") that h0(&C(t)) = 
H(C, t) for t>d- 1. 

Now, combining this information and substituting it in (2) we get 

H(Y1, t) = H(Y, t) - Y2I 

for all t > d - 1 . This proves (d). In particular, 

(3) AH(Y1, t) = AH(Y, t) for all t > d. 

and this proves the second half of the Hilbert function claimed in (e). 
Notice that we still have maximal growth for AH(Y1, d)! The ideal (Iy1 )<d 

hence defines a scheme consisting of an unmixed curve Cl of degree s plus 
some zeroscheme. We first claim that this curve Cl is just C. 

Consider the ideals 
Iyl + (L), Iy + (L) 

(L) (L) 
By (3), these have the same dimension in all degrees > d, hence are equal 
in those degrees. Therefore they define the same degree s zeroscheme in the 
hyperplane defined by L. But they define, respectively, the hyperplane section 
of C and of Cl; hence these hyperplane sections coincide. But Y, Y1, and 
hence C and C1 did not depend on the choice of the general hyperplane, so 
C and C1 have infinitely many hyperplane sections which agree. Since they 
are unmixed, this proves C = C, . 

Now we claim that I = ((IYi)<d) is precisely the ideal of C. (Hence this 
ideal is unmixed!) We know that I is a saturated ideal (Lemma 1.4). Certainly 
Ii C (IC)i C (Iz1)i for all i. But the first and last agree in degree < d, so 
we have that Ii = (IC)i for all i < d . I is generated in degree < d; if we 
prove that the same is true for Ic then we will be done. Let H be a general 
hyperplane and consider the exact sequence 
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Taking cohomology we get 
*HI H(-CnH(d - 1)) -+ H H(C(d - 2)) - H (C (d - 1)) .* 0. 

But d > s and C n H is a zeroscheme of degree s. Therefore 

h1(.JcnlH(d - 1)) = 0 
which implies that h2(jC(d - 2)) = 0. Therefore Ic is d-regular, hence is 
generated in degree < d. Therefore ((IY, )<d) = Ic as desired. This proves (c) 
and the first half of (e). 

We now prove that C is reduced. Observe that since Iy1 D Ic D Ic, and 
since the ends agree in degree < d + 1, we have that (IC)i = (Icr )i for all 
i < d + 1 . Also, Ic is generated in degree < d. It is enough to prove that 
Icd is generated in degree < d, and for this it is enough to show that Icr is 
d-regular. This comes from Remark 3.5 plus the assumption that d > s. 

This last statement in (e) will follow once we prove that AH(C, t) = s for 
s < t < d + 1 . This follows from the fact that C is s-regular. 

Finally, we prove that the scheme V defined by the saturated Iv = ((IY)<d) 
is reduced. We have seen that the one-dimensional component of V is reduced. 
Notice that H(V, d) = H(Y, d) and that H(C, d) = H(Y1, d) . Hence by (d) 
and (e), H(C, d) = H(Y1, d) = H(V, d) - I Y21. But Y is reduced so Y2 is 
a reduced set of points. We have V D C u Y2, so H(V, d) > H(C u Y2, d) = 
H(C, d)+1Y21 (the last equality by (1')). Thus we have equality so V = Cu Y2 
and we are done. O 

Somewhat surprisingly, an analog of Davis' Theorem [D, Theorem 4.1] even 
holds in this situation of higher codimension: 
Corollary 3.7. Let y C pr+1 be a reduced scheme of dimension < 1. Assume 
that for some d > s, AH(Y, d) = s and that the saturated ideal ((IY)<d)sat 
defines a curve V of degree s. Then (a)-(e) of Theorem 3.6 continue to hold. 
Proof. Let I = ((IY)<d) and let J = [7 L], an ideal in S = R/(L). Note 
that H(S/J, d) = s since Ii = (Iy)i for all i < d. However, the saturation of 
J is the ideal of the hyperplane section of V, hence it takes the value s for 
all degrees > d. Therefore J agrees with the saturated ideal of V n H in all 
degrees > d, and H(S/J, t) = s for all t > d. 

This means that H(S/J, -) has maximal growth in degree d, so the same 
proof as in Lemma 1.4 gives that ((IY)<d) is saturated. Let V be the subscheme 
of pr+I defined by ((IY)<d) . The same proof as in Proposition 1.6 establishes 
that J.v is d-regular, and then the same proof as in Theorem 3.6 works in our 
context. 0 

Conjecture 3.8. In the context of Theorem 3.6, if we assume only that AH(Y, d) 
has maximal growth then V will still be a reduced scheme (of dimension com- 
puted by determining the Hilbert polynomial from the maximal growth). 
Example 3.9. The assumption of maximal growth in Theorem 3.6 (or the weaker 
assumption in Corollary 3.7) was necessary in order to conclude that C is 
reduced. That is, if Z is a reduced set of points and if the degree d component 
of Iz defines a curve C, C may not be reduced. For example, consider a 
complete intersection of two cubics in 13 linking a double line Y1 of genus -2 
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to a smooth curve Y2 of degree 7 and genus 3. The two cubics in the complete 
intersection generate the degree 3 component of the ideal of Y2. Hence if Z 
consists of 2000 points on Y2, the ideal of Z in degree 3 defines a complete 
intersection scheme which is not reduced (since it has Y1 as a component). 
Notice that Z even has the Uniform Position Property (see ?4). 

This example also shows that it is possible to have a nonreduced curve Y 
supported on some curve C, such that Iy is generated in degree < m and Iy 
and Ic agree in degree < m. 

Corollary 3.10. Let Z c pr+l be a reduced set of points with AH(Z, d) = 
(d+m-1) - (d-k+m-1) and AH(Z, d + 1) = (d+m) - (d1k+m), where m > 3 
and d > k. Then Z contains a subset Z1 lying on a reduced hypersurface Y 
of degree k inside a Ptm of pfbr+l1 The first difference of the Hilbert function of 
Z, satisfies 

AHf(Y, s)= (t+ -1 t (t k+ _ 
AH(Z l if 0 t?d+1; 

AH(Z, t), if t > d. 
Proof. (Again we are claiming that the values of AH(Y, t) and AH(Z, t) agree 
in degrees d and d + 1.) As in Corollary 2.8, this is maximal growth. By 
Corollary 3.2, the degree d (resp. d + 1) component of J = (Iz + (L))/(L) is 
in fact the degree d (resp. d + 1) component of a complete intersection of the 
desired form, of dimension > m - 1 > 1. Thus if V is, as usual, the scheme 
defined by the saturated ideal ((Iz)<d), the top-dimensional component Y of 
V has as its hyperplane section a complete intersection of dimension > 1 and 
hence Y is itself a complete intersection of the claimed form. As before, V 
then consists of Y plus points. Let Z1 be the subset of Z on Y and Z2 the 
subset off Y. 

Now the same proof used in Theorem 3.6 gives our result here. The only 
difference is that many of the more difficult steps in Theorem 3.6 actually come 
almost for free here, since we had to prove some things about the "mysterious" 
curve C while we know that Y is a complete intersection. o 

Remark 3.11. It is worth comparing Theorem 3.6 and Corollary 3.10. If we 
formally set m = 2 in the hypothesis of Corollary 3.10, we obtain the hypothesis 
of Theorem 3.6. However, if Corollary 3.10 applied in this case, the conclusion 
from Corollary 3.10 would be that the curve C obtained in Theorem 3.6 was a 
plane curve of degree s. But that is obviously not the case in general (consider 
a large number of points on a rational normal curve). Thus, the assumption of 
maximal growth like that of Corollary 3.10 puts extremely stringent demands 
on the postulation of subsets. 
Example 3.12. In Theorem 3.6, one cannot say more about the Hilbert function 
of Y, other than that it coincides with that of some reduced curve (so one can 
try to describe the possible Hilbert functions of reduced curves). One cannot 
even say precisely how many points are in Y, . For instance, consider the Hilbert 
function AH: 1 3 2 2 0.... This can be realized by 8 points, 4 each on two 
skew lines, or it can be realized by 7 points on a plane conic and one point off 
that plane. 
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Example 3.13. One cannot get a formula for the Hilbert function of the "resid- 
ual" set of points as simple as that of Theorem 2.4 (or even Proposition 2.3). 
For instance, consider a reduced set of points Z with Hilbert function having 
first difference 1 3 6 3 3 0. We have seen that a large subset Z1 of Z lies on 
a reduced curve of degree 3. In the next section we will see that with a small 
general position assumption we can even deduce that this curve is a twisted 
cubic. However, if we try to subtract 

t: 0 1 2 3 4 
H(Z, t): 1 3 6 3 3 

H(Z1, t): 1 3 3 3 3 
we would obtain 3 in degree 2, which cannot be a first difference of any Hilbert 
function. 

It does follow from Theorem 4.2 that there are exactly 3 points off the curve. 
However, one can check that these 3 points can be general or they can all lie on 
a line (provided that the line does not meet the twisted cubic). 

4. CONSEQUENCES OF MAXIMAL GROWTH WITH UNIFORMITY ASSUMPTIONS 

In this section we consider a reduced set of points Z in PIr+l and observe 
some consequences of maximal growth of the first difference of the Hilbert 
function assuming some general position properties of the points. 

We start in the situation of Theorem 3.6, where the first difference of the 
Hilbert function takes the same value in two consecutive degrees. Observe that 
if Z C P2 then this kind of growth corresponds to Davis' situation where a 
GCD results. Hence this is covered in ?2, and we can assume that Z is a least 
in 3. 

Definition 4.1. A set of points in Pn is said to be in linear general position if 
no n + 1 of them lie in a hyperplane in pn . 

Theorem 4.2. Let Z c pr+l be a reduced set of points, r + 1 > 3. Assume that 
AH(Z, d) = AH(Z, d + 1) = s for some d > s. Then ((Iz)<d) = Ic where 
C is a reduced curve of degree s (by Theorem 3.6). Let Z1 be the subset of Z 
lying on C and Z2 the "residual" subset. 

(a) If s < r + I and no s + I of the points lie in a Ps- I then C is a rational 
normal curve in a Ps of pr+l . Moreover, there is an integer p > d + 2 
such that 

I 1, if t=0; 
/H(Z t) S, sif 1 < t < p- 1; 

AH(Z, p), if t>p; 
(where 0 < AH(Z, p) < s). In particular, IZ11 = s(p - 1) + 1 + 
AH(Z, p). 

(b) If the points of Z are in linear general position and r + 1 < s < 2(r + 1) 
then C is irreducible and 

( 1 a) { AH(CZ t) if t < d +21 AH(Z1 , t) ={AHCt, ftd 1 
AH(Z,t), if t?d+2. 
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In particular, IZ1 I > r + 2 + ds + Zi>d+2 AH(Z , i) . 
Proof. Part (a) of this theorem is closely related to Maroscia's result [Ma, The- 
orem 2.3(2)]. As noted in ?2, the difference is that [Ma] assumes s < r and 
at least r consecutive occurrences of the value s in the first difference of the 
Hilbert function. 

For either part of the theorem, we have from Theorem 3.6 that 

AH(Z1,~ t) ={AH(C,~t),~ if t?<d +1; 
AH(Z,t), if t>d+2. 

We begin with (a). Suppose that C = C1 u ... u C6 are the irreducible com- 
ponents of C. We have 5= deg Ci = s < r. Since no s + 1 of the points 
lie in a jPs- 1 and since a reduced, irreducible curve of degree j lies in a Pi, 
we see that at most (deg Ci + 1) points of Z1 lie on Ci for each i. Notice 
that IZi I > 2s + 1 by information we have in the first difference of the Hilbert 
function. Then 

2s + 1 < IZI? < (degCi + 1) = 3 + EdegCi = 3 +s. 
i=1 i=1 

Hence s + 1 < 3 , contradicting the fact that deg C = s . Hence C is irreducible 
of degree s. It cannot lie in a P's- 1 since that would force more than s + 1 
points of Z to lie in a P's-I . Therefore C is a rational normal curve of degree 
s spanning a Ps. 

Finally, the Hilbert function claimed in (a) follows since AH(Z1, t) < s for 
all t > d + 2 by maximal growth, and if it takes values < s more than once 
then Castelnuovo's Lemma (cf. [Ma]) forces there to be a set of points which 
violate the condition that no s + 1 of Z can lie in a P's-I . 

For (b), we again suppose that C = C1 u ... C where Z=i deg Ci = s < 
2(r + 1) . For any Ci of degree < r + 1 we again have at most deg Ci + 1 of the 
points of Z1 on Ci. If C is not irreducible then at most one component of 
C is nondegenerate. If no component is nondegenerate then exactly the same 
proof as in (a) works here. (The fact that s < r was not needed.) 

Now assume that C has a component C1 which is nondegenerate in pr+ 1, 
r+ 1 > 3. By Remark 3.5, regC, < (degC, - 1). If C :$ C1 then there is a 
component CQ which is degenerate. Let C = Y U C6. It follows from Remark 
3.5 and the fact that C1 is nondegenerate and r + 1 > 3 that 

reg Y < deg Y - 1 = s - deg C - 1 < d - deg C - 1. 

We have seen that there are at most deg CQ + 1 points of Z1 on C6. By the 
bound on reg Y, we can choose a form F of degree d - deg C - 1 which 
contains Y but not any of the points of Z1 not on Y. Then by choosing 
deg CQ + 1 sufficiently general hyperplanes through these remaining points, we 
obtain a form of degree d which vanishes on Z1 but not on C6, contradicting 
the fact (from the proof of Theorem 3.6) that ((IZ1)<d) = Ic - 

Finally we prove the lower bound on the number of points of Z1 . If H = pr 
is a general hyperplane, the points of C n H are in linear general position, and 
hence the first difference of the Hilbert function of C n H is 

1 r s-r- 1 O.... 
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Note that we are using the fact that s - r - 1 < r so Castelnuovo's Lemma again 
applies. This means that the Hilbert function of C n H is 

1 r+ 1 s s... 

and so AH(C, t) > s for t > 2 and AH(C, 1) = r + l . Combining this with 
the formula for AH(Z1, -) in (b) gives the result. o 
Definition 4.3. A reduced, finite set of points Z is said to have the Uniform 
Position Property (U.P.P.) if any two subsets of the same cardinality have the 
same Hilbert function; namely, if Y c Z is a subset of cardinality n, then for 
all t 

H(Y, t) = min{H(Z, t), n}. 
We have already seen, in Theorem 4.2, how the imposition of a small amount 

of uniformity on a set of points, with a given Hilbert function, can dramatically 
affect the disposition of a large subset of those points. 

We now investigate how the much stronger hypothesis of uniform position 
influences these matters. 
Lemma 4.4. Let Z c pr+l be a reduced set of points with U.P.P. and suppose 
that the forms in (Iz)d all have F, of degree k, as a common factor. Then 

(a) F is irreducible, and 
(b) (Iz)t = (F)t for all t < d. 

In particular, F defines the hypersurface of least degree containing the points of 
z. 
Proof. By assumption, (Iz)d C (F)d and so (Iz)t C (F)t for all t < d. It 
follows that the forms of least degree in Iz have degree > k and all have F 
as a factor. Let a > k be this least degree. 

Suppose H(Z, a) = b0, and let Y be a subset of Z consisting of b0, points. 
By U.P.P. we must have 

H(Z, t) = H(Y, t) = H(pr+l, t) for all t <a 

and H(Y, t) = b0r for all t > a. Thus, by construction, (Iz)c. = (Iy),0. 
Since Y is a set of points in uniform position (in the sense of [GeMa]) we can 
apply Corollary 3.8 of that paper to assert that the generic element of (Iy), is 
irreducible. Since all elements of (Iy),> have F as a factor, we conclude that 
F is irreducible and so a = k. 

Once we have F in Iz it follows that (F)t C (Iz)t and hence we have 
equality for all t < d . o 

If we combine this lemma with Proposition 2.7 and Corollary 2.8 we imme- 
diately obtain 
Corollary 4.5. Let Z be a set of points in pr+l with U.P.P. Let L be a general 
linearform in R = k[Xo, ... , Xr+i] and let J = [Iz + (L)]/(L) in S = R/L, 
so that H(S/J, t) = AH(Z, t). 

Let 0 < k be the potential GCD of Jd and suppose H(S/ J, d) has maximal 
growth. Then 

(a) H(S/J, d) = fr,k(d) andH(S/J, d + 1) = fr,k(d + 1). 
(b) Jd = (F)d and Jd+I = (F)d+I where F is a form of degree k in S. 
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(c) (Id) = (F)d and (Id+i) = (F)d+1 where F is an irreducible form of 
degree k in R. 
Example 4.6. A set of points Z in P4 with Hilbert function 

1 5 15 35 61 98 98... 

cannot have U.P.P. Indeed, consider the first difference of the Hilbert function, 

1 4 10 20 26 37 0.... 

The growth from 26 to 37 in these degrees is maximal, and the potential GCD 
is 2. Then Corollary 4.5 says that Z must lie on a quadric hypersurface, and 
clearly that is to the case with this Hilbert function. 

Theorem 4.7. Let Z C pr+l be a reduced finite set of points with U.P.P. Assume 
that AH(Z, d) = AH(Z, d + 1) = s, d > s. Then there exists a reduced, 
irreducible curve C of degree s such that 

(a) ZcC; 
(b) Ic = ((Iz)<d); 
(c) AH(Z, t) = AH(C, t) for all t < d + 1. 

Proof. If r + 1 = 2, this is covered in ?2, so we assume r + 1 > 3. By Theorem 
3.6, we know that there exists a reduced curve C containing a subset Z1 C Z, 
such that/Iz, agrees with Ic up to degree d + 1. Thus by U.P.P., Iz agrees 
with Ic and hence with Iz1 up to degree d + 1. But theorem 3.6 says that 
AH(Z1, t) = AH(Z, t) for t > d, so we get that Z = Z1 . This proves (a), (b), 
and (c). 

It remains only to prove that C is irreducible. If C contains a component 
which is degenerate, the same proof as in Theorem 4.2 works here; hence we 
may assume that all the components of C are nondegenerate, and so of degree 
> r + 1. Let Cl, . . ., C6 be the components of C and write si =deg Ci . By 
Remark 3.5, each component Ci has regularity < si + 2 - (r + 1). 

Let Zi be the subset of Z lying on Ci. Since Zi c Ci c C, we get that 
H(Zi, t) < H(Ci, t) < H(C, t) for all t. Notice that H(C, t) = H(Z, t) for 
all t < d + 1. Thus for any t < d + 1 for which H(Ci, t) < H(C, t), we have 
H(Zi, t) < H(Z, t). For such a t, then, U.P.P. implies that 1Zil = H(Zi, t) < 
H(Z, t). 

Notice that in any case the inequality H(Ci, t) < H(C, t) is satisfied for 
t = regCi since in that degree the homogeneous component of Ici cuts out 
Ci. Thus 

(1) iZil = H(Zi, si + 1 - r) < H(Z, si + 1 - r), 

and so 

IZI < EIZil < H(Z, 5i + 1 - r)+ ++H(Z, sj + 1 - r). 

By (1), the points of Zi impose independent conditions on forms of degree 
si + 1 - r. Now, choosing any point P E Z, omit it from any Zi in which 
it may occur. Then choose a form Fi of degree si + 1 - r vanishing on all 
points of Zi other than P. The product F = F1 ... Fj vanishes at all the 
points of Z but P, so Z imposes independent conditions on forms of degree 
(s5 + 1 -r)+ +(sj+ 1 -r) =s+3(1 -r) <s < d. But H(Z, d) < IZI-s 
so this is impossible. o 
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Remark 4.8. Thanks to Corollary 3.7, we could have obtained the results of 
Theorem 4.7 assuming only that the value of AH(Z, -) is s in degree d and 
that the homogeneous component of the ideal in degree d defines a curve of 
degree s. 0 

Conjecture 4.9. Let Z be a finite set of points in pr+l with U.P.P. and assume 
that AH(Z, -) has maximal growth in degree d. Then the scheme V defined 
by the homogeneous component of the ideal of Z in degree d is not only 
reduced but irreducible as well, and Z c V. (See also Conjecture 3.8.) 

Example 4.10. Let Z be a finite set of points in P3 with Hilbert function 
1 4 10 15 19 23 23.... 

Then Z cannot have U.P.P. Indeed, consider the first difference of the Hilbert 
function, 

1 3 6 5 4 4 0.... 
If Z had U.P.P., then, by Theorem 4.7, Z must lie on a reduced irreducible 
curve C of degree 4, and its Hilbert function must agree with that of C up 
to degree 5. In particular, C cannot lie on a surface of degree 2, whereas any 
reduced, irreducible curve of degree 4 in P3 does lie on a quadric. 
Remark 4.1 1. As is well-known, restrictions on the Hilbert function of points 
with U.P.P. in pr give restrictions on the postulation of a general hyperplane 
section of a curve in pr+1 . (For a good example of how Davis' theorem about 
points in p2 [D, Theorem 4.1 ] can be used to obtain information about curves, 
see [ES]). 

In a similar way, the results of the present paper (especially ?4) should have 
implications for curves. We have begun to investigate this idea, and the results 
of that study will be the subject of another paper. 
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