
Lecture 1: Introduction

This seminar is about zero-dimensional subschemes of Pn(k), (k = k, chark = 0),
alternatively, about saturated homogeneous ideals I ⊂ k[x0, . . . , xn] = R for which the
Krull dimension of R/I = 1.

The simplest examples of such ideals correspond to points in Pn. So, let X =
{P1, . . . , Ps} be a set of s distinct points in Pn. Then Pi corresponds to the prime ideal
℘i in R of height n, and ℘i = (Li1, . . . , Lin) where the Lij , j = 1, . . . n are linearly in-
dependent linear forms. Hence I = ℘1 ∩ . . . ∩ ℘s is the saturated ideal corresponding to
X. These examples are all the reduced ideals corresponding to (reduced) zero-dimensional
subschemes of Pn.

We can write R = ⊕∞
i=0Ri (Ri the vector space of forms in R of degree i) where

dimkRi =
(i+n

n

)
and I = ⊕i≥0Ii. The Hilbert Function of I, or of A = R/I = ⊕Ai, or of

X, is the numerical function

H(X, t) := H(A, t) = dimk At .

Example: Consider three general points in P2. After a change of variables we can assume
the points are

P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1] .

We have that I, the ideal of these three points, is

I = ℘1 ∩ ℘2 ∩ ℘3 = (y, z) ∩ (x, z) ∩ (x, y) = (xy, xz, yz) .

One verifies that (R/I)n =< xn, yn, zn > for all n ≥ 1 and so the Hilbert function of these
three points is: 1 3 3 3 · · ·.

It is easy to check that if we had, instead, chosen our three points less generally (i.e.
if all were on a line of P2), then the Hilbert function would have been: 1 2 3 3 · · ·.

If we let M1, . . . ,M(d+n
n ) be the monomial basis for Rd then an arbitrary element of

Rd looks like
c1M1 + · · · c(d+n

n )M(d+n
n ) = F
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where the ci ∈ k are arbitrary.
In order that F vanish at the point P , i.e. F (P ) = 0, we must have

M1(P )c1 + · · · + M(d+n
n )(P )c(d+n

n ) = 0

i.e. we must have a certain linear expression in the ci’s vanish.
So, if we consider s points, P1, . . . , Ps in Pn, then the forms of degree d which vanish

at these points are precisely the solutions to the system of linear equations

M1(P1)c1 + · · · · · · + M(d+n
n )(P1)c(d+n

n ) = 0
· · · · · · · ·
· · · · · · · ·

M1(Ps)c1 + · · · · · · + M(d+n
n )(Ps)c(d+n

n ) = 0

which we write

Md





c1

·
·

c(d+n
n )



 = 0

where Md is the s×
(d+n

n

)
coefficient matrix of the system of equations.

Since the set of solutions to this system of linear equations is precisely the vector space
Id, the dimension of the space of solutions is,

dimk Id =
(

d + n

n

)
− rkMd .

Thus
H(R/I, d) =

(
d + n

n

)
− dimk Id = rkMd .

It is well known, and not hard to prove, that for any integer s, we can pick points
P1, . . . , Ps so that the matrices Md all have the maximum rank possible, i.e.

rkMd = min{s,
(

d + n

n

)
} .

This tells us then:
A general set X of s points in Pn has Hilbert function

H(X, t) = min{s,
(

t + n

n

)
} .
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What can we say about the Hilbert functions of non-reduced zero-dimensional sub-
schemes of Pn?

To make life simple, we shall begin by assuming that our subscheme is supported
at a single point, P (which we might as well assume is the point P = [1 : 0 : · · · : 0])
i.e. from an algebraic point of view we are looking at a primary ideal q with radical
√

q = ℘ = (x1, · · · , xn).
There are many interesting classes of primary ideals for ℘ = (x1, . . . , xn) which we

could consider, but for the moment, one class stands out, thanks to a theorem of Macaulay
(see [Z-S, Vol. II, Appendix]).

Theorem: Let I = (F1, . . . , Fs) be an ideal of R of height s (i.e. I is a complete intersection
ideal). Then Ir is unmixed with respect to height, i.e. all the primary components of Ir

have the same height s.
In particular, if I = ℘ is prime then Ir is a ℘-primary ideal.

We can apply this theorem, for example, to the prime ideal ℘ = (x1, . . . , xn) above
and so we obtain that all the ideals of the form ℘r are ℘-primary.

Our interest in this class of ideals does not only come from the fact that they are
(unexpectedly!) ℘-primary, but also because these ideals were much studied classically. I
will now explain the source of the classical interest in these ideals.

Let F ∈ ℘ be a homogeneous polynomial of degree d. If we dehomogenize F with
respect to x0, we obtain f ∈ S = k[x1, . . . , xn] (I’ll abuse the notation here and use the
same variables.) The point P above then becomes P = (0, . . . , 0) = 0 ∈ An(k). We can
write

f = f0 + f1 + · · · + fd where deg fi = i .

Moreover, since F ∈ ℘ we have that f(P ) = 0 i.e. f0 = 0.
Recall that if f1 = a1x1+· · ·+anxn then we can rewrite f1 (at least if the characteristic

of k is 0) as

f1 = ((∂f/∂x1)|0) x1 + · · · + ((∂f/∂xn)|0) xn

and, if all the first partials of f do not vanish at P = 0, then P is a smooth point of V (f)
and f1 = 0 is the equation of the tangent hyperplane to V (f) at P .
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In fact, F ∈ ℘\℘2 ⇔ at least one of these first partials does not vanish at 0. Put
another way,

F ∈ ℘2 ⇔ (∂F/∂xi)|0 = 0 for all i = 1, . . . , n .

(recall Euler’s Theorem). Moreover, this happens,

⇔ P is a singular point of V (F ) .

So, if I = ℘2 then Id consists of all the forms of degree d which have a singularity at P .
This vector space is a classic example of a linear system of hypersurfaces of Pn, i.e. a linear
subspace of Rd. Moreover, it is a subspace for which it is easy to see the linear equations
that describe it (namely certain coefficients of the dehomogenized F ’s from Rd have to
vanish.)

We can continue in this way by considering the Taylor expansion of f around 0 and
thus reinterpret the coefficients of f2 as giving us the various second partial derivatives of
f (evaluated at 0). More precisely, if aα,βxαxβ is a term of f2 then

aα,β =






(∂f/∂xα∂xβ)|0 if α *= β

(1/2!)(∂f/∂x2
α)|0 if α = β .

Notice further that all the second partial derivatives of f vanish at 0 ⇔ F ∈ ℘3 ⇔ P

is a singular point of V (F ) having multiplicity ≥ 3.
More generally:

all the partial derivatives of f , of order ≤ t, vanish at P ⇔ F ∈ ℘t+1

⇔ P is a singular point of V (F ) having multiplicity ≥ t + 1 .

Notice also that if F ∈ ℘t and deg F = d (t ≤ d obviously) then

f = ft + · · · + fd

and clearly any such f ∈ S gives an F ∈ ℘t by homogenization. It is a simple consequence
of this fact that

H(R/℘t, s) =






(s+n
n

)
if s < t

(t−1+n
n

)
if s ≥ t.
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Definition: Let P ∈ Pn and let P correspond to ℘ ⊂ R = k[x0, x1, . . . , xn]. If t is any
positive integer then the subscheme of Pn defined by the ℘-primary ideal ℘t is called a fat
point in Pn supported on P and is denoted (P ; t).

Observe that a single fat point (P ; t) in Pn behaves like
(t−1+n

n

)
distinct general points

of Pn (at least from the point of view of the Hilbert function).

Examples:
In P2 : ℘ = (x1, x2) ⊂ k[x0, x1, x2] = R. Then,

H(R/℘2,−) : 1 3 3 · · ·

H(R/℘3,−) : 1 3 6 6 · · · .

In P3: ℘ = (x1, x2, x3) ⊂ k[x0, x1, x2, x3] = R. Then

H(R/℘2,−) : 1 4 4 · · ·

H(R/℘3,−) : 1 4 10 10 · · · .

There is nothing to stop us from extending our earlier definition to include more than
one point at a time.

Definition: Let P1, . . . , Ps be distinct points in Pn(k) with corresponding prime ideals
℘1, . . . , ℘s. Let α1, . . . , αs be any set of positive integers. The subscheme of Pn defined
by the ideal I = ℘α1

1 ∩ · · · ∩ ℘αs
s is called a scheme of fat points in Pn and is denoted

(P1, . . . , Ps;α1, . . . , αs).

Remarks:
1) I is a saturated homogeneous ideal. This is clear since the way
we wrote I gives its primary decomposition and there is no primary
component for the irrelevant ideal.
2) Since I is a saturated ideal there is no ambiguity in referring to it
as THE ideal of the fat points (P1, . . . , Ps;α1, . . . , αs).
3) WARNING:

In general (℘1 ∩ . . . ∩ ℘s)α is not the ideal of the fat points
(P1, . . . , Ps;α, . . . , α).
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e.g. If s = 3 and, as earlier, we let P1, P2, P3 be the coordinate
points of P2 so that I = ℘1∩℘2∩℘3 = (xy, xz, yz) then I2 only begins
in degree 4. But ℘2

1 ∩ ℘2
2 ∩ ℘2

3 contains a cubic equation, namely xyz.
(Draw the picture!).

In general (℘1 ∩ . . . ∩℘s)α ⊆ ℘α
1 ∩ . . . ∩℘α

s but we need not have equality because the
primary decomposition of (℘1 ∩ . . . ∩ ℘s)α is:

(℘1 ∩ . . . ∩ ℘s)α = ℘α
1 ∩ . . . ∩ ℘α

s ∩ q

(thanks to Macaulay’s theorem again) where √
q = (x0, x1 . . . , xn) i.e. (℘1 ∩ . . . ∩ ℘s)α

need not be saturated.

Problem: If P1, . . . , Ps are sufficiently general points of Pn with corresponding prime ide-
als ℘1, . . . , ℘s ⊂ R = k[x0, . . . , xn] and α1, . . . , αs are a given set of non-negative integers,
set I = ℘α1

1 ∩ . . . ∩ ℘αs
s . What is the Hilbert function of R/I? (Recall that, from very

general considerations about Hilbert functions we know that eventually H(R/I,−) takes
on the constant value

∑s
i=1

(αi−1+n
n

)
.)

Notice that this is a sort of differential interpolation problem. We are asking the
dimension of the space of “hypersurfaces” of a given degree which pass through a given
set of points and have, at those points, a singularity of multiplicity at least αi.

We have seen, also, that if s = 1 then R/℘t has the Hilbert function of
(
t−1+n

n

)
distinct

general points of Pn. So, it is natural to ask:

Question 1: For sufficiently general sets of points (as above) does I have the Hilbert
function of

∑s
i=1

(αi−1+n
n

)
distinct general points of Pn?

There is a first simple answer to this question. NO!

Examples:
Let P1, P2 be any two points of P2, Pi corresponding to ℘i, and let α1 = α2 = 2 so

that I = ℘2
1 ∩ ℘2

2.
Then Question 1 asks if I has the Hilbert function of 6 general points of P2. Since 6

general points of P2 have Hilbert function 1 3 6 6 · · · there should be no conic in I.
But, if L is the equation of the line connecting P1 and P2 then L2 ∈ I.
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Another example comes as follows: let P1, . . . , P5 be 5 general points in P2 with
corresponding prime ideals ℘i. Consider I = ℘2

1 ∩ . . . ∩ ℘2
5. We want to know if I has

the Hilbert function of 5 · 3 = 15 general points of P2. Since 15 general points of P2 have
Hilbert function 1 3 6 10 15 15 · · · there should be no quartic in the ideal I. But,
5 points of P2 always lie on a conic and if C is the equation of that conic then C2 is a
quartic in I.

With these examples one begins to wonder if Question 1 ever has a positive response!

Theorem 1: (J. Alexander, A. Hirschowitz) Fix any integer n. If s >> 0 and if the αi ≤ 2
then I (as above) does have the Hilbert function of

∑s
i=1

(αi−1+n
n

)
distinct general points

of Pn.

Remarks:
1) My formulation of Theorem 1 is a much weaker statement than that
actually proved by Alexander and Hirschowitz. I’ll give the precise
statement later. For my purposes, this is the easiest way to give the
idea of their result.
2) To give some idea of how much better than Theorem 1 the real
theorem is, it suffices to note that (when n = 2) the two examples
I’ve given above are the only examples for which the answer is no! (of
course, when all the αi ≤ 2.)
3) As a small indication of how much more complicated the situation
is for higher exponents, I should mention that Giuliana Fattabi has
recently observed (although it can be deduced, with some effort, from
earlier work of S. Giuffrida) that if P1, . . . , P6 are any 6 general points
of P2 , with corresponding prime ideals ℘i, then the ideals ℘a

1∩. . .∩℘a
6

give a negative answer to Question 1 for all a ≥ 14.
4) There has been a great deal of recent work on this problem. In addi-
tion to the work of Alexander and Hirschowitz referred to above, there
have been several very interesting things done by M.V. Catalisano, A.
Gimigliano, B. Harbourne, Trung and G. Valla. In particular, there
is a wonderful Survey Article by Gimigliano (Our Thin Knowledge
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of Fat Points) in another of the Queen’s Papers in Pure and Applied
Mathematics (No. 83, The Curves Seminar at Queen’s, Volume VI).

Very recently, there have been some fascinating preprints by A. Iarrobino et. al. on
this subject. Iarrobino’s approach is quite different from the one taken by all the authors
above and one of the purposes of these lectures is to make the approach of Iarrobino better
known to people who have worked in this area (and to understand it better myself!).
There are some lovely things that come out of Iarrobino’s approach which give some
unexpected connections between the Problem mentioned above and some very classical
questions about secant varieties of the Veronese varieties. The connection will be made via
Waring’s Problems for homogeneous polynomials. This classical connection was brought
to people’s attention recently by R. Lazarsfeld. I will explain that also in the suceeding
lectures.
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Lecture 2: Inverse Systems

One of the fundamental ideas in Iarrobino’s approach to the study of many questions
concerning 0-dimensional subschemes of Pn is to use Macaulay’s Inverse Systems. My
impression is that this topic is not very well known to many people working in commutative
algebra and algebraic geometry, particularly young people. I think, therefore, that it will
be useful to include something on this basic notion in these notes. In this early discussion I
will concentrate on the case of characteristic zero, but I will remedy that in a later Lecture.

In this section we will consider two polynomial rings at the same time:

R = k[x1, . . . , xn] and S = k[y1, . . . , yn] .

As I mentioned earlier, in order to avoid certain difficulties I will always assume that the
field k has characteristic zero. Before long I will also assume that it is algebraically closed.
We will think of the polynomials of R as representing partial differential operators and
the polynomials of S as the “real” polynomials on which the differential operators act.
This action is sometimes called the “apolarity” action of R on S. We begin with a precise
definition of this action by saying

xi ◦ yj = (∂/∂yi)(yj ) =

{ 0 if i *= j

1 if i = j
.

In this way, the {xi} of R1 behave like the basis dual to the {yi} of S1. Hence R1 can be
thought of as the dual space of S1.

If we use the standard (and formal) properties of differentiation, we can extend this
action of R1 on S1 to:

Ri × Sj −→ Sj−i .

where ri × sj := ri ◦ sj .

Example: Let F2 = x2
1 + x1x2 and let G4 = y4

1 + y4
2. Then F2 ◦G4 ∈ S2 and

F2 ◦G4 = 12y2
1 .
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Remarks:
1) Notice that the action of R on S makes S into an R-module. I.e.

i) r ◦ (s1 + s2) = r ◦ s1 + r ◦ s2 ;

ii) (r1r2) ◦ s = r1 ◦ (r2 ◦ s) ;

iii) (r1 + r2) ◦ s = r1 ◦ s + r2 ◦ s ;

iv) and 1 ◦ s = s .

(∗)

In addition, if c ∈ k then

v) r ◦ (cs) = (cr) ◦ s = c(r ◦ s) .

2) Note also that the action of R on S lowers degree. Thus, S is not a finitely generated
R-module. (Some authors, in an attempt to keep the action going in the “right” direction,
actually reverse the ordering on S. In that case, S is different from 0 only in non-positive
degrees).

If we write a monomial of the ring R as xα (where α = (a1, . . . , an), ai ∈ Z, ai ≥ 0)
and a monomial of the ring S as yβ, with β described analogously, then we say

α ≤ β ⇔ ai ≤ bi for all i ⇔ xα|xβ in R .

If xα does not divide xβ in R we write α ! β.

Proposition 2.1: Let xα, yβ be as above, then

xα ◦ yβ =






0 if α ! β

Πn
i=1((bi)!/(bi − ai)!)yβ−α if α ≤ β

.

(Note: 0! = 1) One sees, from this proposition, how zero characteristic enters into the
picture.

Thus, in the example above we only had to observe that y2
1 only divided y4

1 and that
y1y2 did not divide either y4

1 nor y4
2.
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Notice that in view of i), iii) and iv) of (∗) above, the apolarity action induces a
k-bilinear pairing

Rj × Sj −→ k

for each j = 0, 1, . . ..

Now, whenever one has a k-bilinear pairing V ×W → k given by v × w → v ◦ w, one
has two induced k-linear maps:

φ : V −→ Homk(W,k) and χ : W −→ Homk(V, k) ,

where
φ(v) := φv and φv(w) = v ◦ w .

Similarly,
χ(w) := χw and χw(v) = v ◦ w .

Definition: The bilinear pairing V ×W → k is called nonsingular (or sometimes a perfect
pairing) if the maps φ and χ (above) are isomorphisms.

It is well-known, and easy to prove that:

Proposition 2.2: The bilinear pairing V × W → k is nonsingular ⇔ for any basis
{v1, . . . , vn} of V and {w1, . . . , wn} of W the matrix (bij = vi ◦wj) is an invertible matrix.

With this proposition, the following is clear.

Proposition 2.3: The bilinear pairing

Rj × Sj −→ k

induced by the apolarity action of R on S, is nonsingular.

Proof: Order the monomials of Rj by xα1 , . . . , xαt and those of Sj by yα1 , . . . , yαt . Then,
with respect to these ordered bases of Rj and Sj, the matrix of the bilinear form is a
diagonal matrix (Prop. 2.1) whose ith diagonal entry is ci, where, if αi = (ai1, . . . , ain)
then ci = Πn

j=1(aij )! *= 0. Thus the matrix for the pairing is invertible.
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Note: The fact that the diagonal entries of the matrix described above are not 1 (if j > 1)
means that, for j > 1, the bases {xα} of Rj and {yβ} of Sj are not dual bases – but
they almost are! We will come back to this point later when we consider the situation in
characteristic p *= 0.

Remark: If V × W → k is a pairing and V1 ⊆ V is a subspace then V ⊥
1 ⊆ W is the

subspace of W consisting of

{w ∈ W |v ◦ w = 0 for all v ∈ V1} .

This subspace of W is often referred to as V1 “perp”.
Alternatively,:

V ⊥
1 = {w ∈ W | χw(V1) = 0}

(where χ is as defined above).
Likewise, if W1 ⊆ W is a subspace, we define W⊥

1 ⊆ V by

W⊥
1 = {v ∈ V | v ◦ w = 0, for all w ∈ W1} .

Proposition 2.4: Let V ×W −→ k be a nonsingular pairing where n = dimk V = dimk W .
If V1 ⊆ V and dimk V1 = t then dimk V ⊥

1 = n− t.

Proof: Let v1, . . . , vt be a basis for V1 and extend that basis to a basis for all of V ,
{v1, . . . , vt, vt+1, . . . , vn} = B. Now let {w1, . . . , wt, wt+1, . . . , wn} be the basis for W

which is dual to B.
Clearly wt+1, . . . , wn ∈ V ⊥

1 .
On the other hand, let w = a1w1 + . . .+atwt +at+1wt+1 + . . .+anwn be an arbitrary

element of V ⊥
1 . Since v1 ◦ w = a1 and v1 ◦ w = 0 we get that a1 = 0. Similarly a2 =

· · · = at = 0 and so w is in the subspace spanned by wt+1, . . . , wn. This gives that
V ⊥

1 =< wt+1, . . . , wn > and so dimk V ⊥
1 = n− t.

Before giving the definition of Inverse Systems I want to remind you that we have
before us a very general situation, namely that of a ring (R) and a module over that ring
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(S). In that context there is a very simple thing one can look at – an ideal of R and the
submodule of S which it annihilates or, looking from the other side, a submodule of S and
the ideal of all the elements in R which annihilate that submodule. We shall, eventually,
consider both of these things for the special ring and module before us, but for now we
shall consider only one.

Definition: Let I be a homogeneous ideal of the ring R. The inverse system of I, denoted
I−1, is the R-submodule of S consisting of all the elements of S annihilated by I.

Remarks:
1) Suppose that I = (F1, . . . , Ft) and G ∈ S. Then G ∈ I−1 if and
only if F1 ◦ G = · · · = Ft ◦ G = 0. Since finding all G for which
F ◦ G = 0 is nothing more than finding all the polynomial solutions
to the differential equation defined by F , one sees that finding I−1 is
the same thing as solving (with polynomial solutions) a finite set of
differential equations.
2) I−1 is a graded submodule of S.
3) I−1 is not necessarily closed under multiplication, i.e. I−1 is not
(generally) an ideal of S.

Example: Suppose that I = (x1) ⊆ k[x1, x2]. Then, by definition,

I−1 = {G ∈ S | (∂/∂y1)(G) = 0} .

Since I−1 is graded, it is enough to know what I−1 looks like in every degree.

Let ay1 + by2 ∈ S1, then (∂/∂y1)(ay1 + by2) = a. Thus (I−1)1 =< y2 >.

Let ay2
1 + by1y2 + cy2

2 ∈ S2. Then (∂/∂y1)(ay2
1 + by1y2 + cy2

2) = 2ay1 + by2, and this
= 0 ⇔ a = 0, b = 0. Thus, (I−1)2 =< y2

2 >.

Continuing in this way it is easy to see that

I−1 = k⊕ < y2 > ⊕ < y2
2 > ⊕ < y3

2 > ⊕ · · ·

Notice several things about this example. First of all I−1 is not a finitely generated
R-submodule of S (recall the direction of the R-action!), nor is it the ideal of S generated
by y2.
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How do we go about finding I−1 more generally?

As we stated above, I−1 is a graded module. Thus it is enough to know (I−1)j for
every j.

Now, by definition
Ij × I⊥

j → 0

i.e. Ij certainly annihilates I⊥
j , so,

(I−1)j ⊆ I⊥
j .

Proposition 2.5:
(I−1)j = I⊥

j

Proof: We already have an inclusion, so we may as well suppose that G ∈ I⊥
j and try to

show that G ∈ (I−1)j .
Since G ∈ I⊥

j we have that h ◦G = 0 for all h ∈ Ij . It will be enough to prove:

Claim: F ◦G = 0 for all F ∈ I.

Pf: Case 1 : deg(F ) > j. In this case F ◦G = 0 simply because the
degree of F is big with respect to the degree of G.

Case 2 : deg(F ) < j. In this case let α = (a1, . . . , an) where

n∑

i=0

ai = j − deg(F ) .

Then deg(xαF ) = j and xαF ∈ Ij . Thus (xαF )◦G = 0, i.e. xα ◦ (F ◦
G) = 0. But this means that F ◦G is annihilated by every monomial
xα. Since deg(xα) = j − deg(F ) and F ◦ G ∈ Sj−deg(F ) and the
apolarity pairing is non-singular, this implies tht F ◦ G = 0, as we
wanted to show.

This is a very useful proposition as it implies that the inverse system of I can be
constructed graded piece by graded piece. There are some interesting consequences of this
proposition.
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Remarks:
1) dimk(I−1)j = dimk(Rj/Ij) := H(R/I, j).

Pf: We’ve already noted that (I−1)j = I⊥
j and that dimk I⊥

j =
dimk Sj − dimk Ij . Since dimk Sj = dimk Rj we are done.

We will have occassion to use this remark quite often. It reduces the computation
of the Hilbert function to a discussion of the size of the inverse system of the ideal. One
could also use it in another way to determine the size of (I−1)j . For example,

2) I−1 is a finitely generated R-module ⇔ I is an artinian ideal.
To see why this is so consider the nature of the R-action on S – it is
clear that I−1 is finitely generated ⇔ (I−1)j = 0 for all j >> 0. By
our first Remark above, this occurs ⇔ H(R/I, j) = 0 for all j >> 0.
This last is true if and only if I is an artinian ideal.

3) The Proposition also gives us a very simple description of the inverse system of a
monomial ideal.

Since (I−1)j = I⊥
j and we know exactly what I⊥

j looks like when
Ij is a vector space spanned by monomials of degree j, namely

I⊥
j =< the monomials of Sj not “in” Ij > .

(I have put the word “in” in quotes because Ij is not in S at all.)
I.e. the inverse system of a monomial ideal is, what has been

called in the literature, an order ideal of monomials.
Yet another way to say this is: I−1 is the R-submodule of S

spanned by a set of monomials which form a k-basis for R/I. (Again,
note the abuse of language as I−1 ⊂ S, it is not in R/I.)

There is a simple thing we can say about the inverse system of an intersection of
ideals.

Proposition 2.6: Let I and J be ideals of the ring R. Then

(I ∩ J)−1 = I−1 + J−1 .
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Since the inverse system is constructed graded piece by graded piece (Proposition 2.5),
Proposition 2.6 will be an immediate consequence of the following Lemma.

Lemma 2.7: Let V ×W −→ k be a nonsingular bilinear pairing with dimk V = dimk W =
n. Let U1 and U2 be subspaces of V , then

(U1 ∩ U2)⊥ = U⊥
1 + U⊥

2 .

Pf: I will leave, as a simple exercise, the fact that U⊥
1 ∩ U⊥

2 = (U1 + U2)⊥.
⊇ :

Now U1 ∩ U2 ⊆ Ui implies that U⊥
i ⊆ (U1 ∩ U2)⊥ for i = 1, 2.

Thus, U⊥
1 + U⊥

2 ⊆ (U1 ∩ U2)⊥.
⊆ :

As for this inclusion we have:

dimk(U⊥
1 + U⊥

2 ) = dimk U⊥
1 + dimk U⊥

2 − dimk(U⊥
1 ∩ U⊥

2 )

which by the exercise above

= (n− dimk U1) + (n− dimk U2)− dimk(U1 + U2)⊥

= n− dimk U1 + n− dimk U2 − [n− dimk(U1 + U2)]

= n−dimk U1+n−dimk U2−[n−(dimk U1+dimk U2−dimk(U1∩U2))]

= n− dimk(U1 ∩ U2) = dimk(U1 ∩ U2)⊥ .

Since we already have proved one containment, this equality of di-
mensions means the two spaces are equal.

Aside:
I’ve said that the ring of polynomials S is being considered, in this context, as a

module over the polynomial ring R. In some sense, S seems to have lost its ring structure
in the process! One thing one might ask is the following: suppose we try to remember the
ring structure on S and consider an ideal J *= 0, J ⊂ S and we consider all the partial
differential operators which annihilate this entire ideal. It’s easy to see that such an
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annihilator is an ideal of R. But, this is not an interesting idea, as the following lemma
demonstrates. (I am grateful to Tony Iarrobino for this simple and elegant proof.)

Lemma 2.8: Let F ∈ Sj and consider (F )j+d = FSd = V , the (j + d)− th graded piece
of the ideal generated by F . The only form of degree d in R which annihilates V is the
zero form.

Proof: Consider any multiplicative ordering on the monomials of S which respects degree
and write

F = m1 + m2 + · · ·mr where m1 > · · · > mr .

Let m1 = cyα (deg α = j).
Let n be any monomial of Sd. Then

nF = nm1 + · · · + nmr .

Let m = xα (where m1 = cyα) be the analogous monomial of Rd. Then

m ◦ nF = n + b2 + · · · + br

where bi = 0 if m1 does not divide nmi. Notice that, if we don’t think of the bi that are
= 0, then we have written the monomials of m ◦ nF in decreasing order. Thus, n is the
leading monomial of m ◦ nF and we have shown that the pairing

Rj × V −→ Sd

is onto Sd (in fact, we have shown that m× V → Sd is onto).
Now, let r ∈ Rd and suppose that r annihilates FSd, i.e.

r ◦ (FSd) = 0 .

Then (rRj)◦ (FSd) = 0. But, we can rewrite this as r◦ (Rj ◦FSd) = 0. But, we say above
that the term Rj ◦ FSd = Sd, so we obtain r ◦ Sd = 0. But, the pairing Rd × Sd → k is
nonsingular. So, r = 0 as we wanted to show.
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Lecture 3: Inverse Systems of Fat Points

Let’s make our discussion of inverse systems more precise in the case of a single fat
point. We have

R = k[x0, x1, . . . , xn] ↔ Pn(k)

℘ = (L1, . . . , Ln) ↔ P ∈ Pn

Since the Li are linearly independent linear forms, we can make a linear change of variables
in Pn so that P = [1 : 0 : . . . : 0] and ℘ = (x1, . . . , xn), which is a monomial ideal.

Let I = ℘#+1, i.e. a ℘-primary ideal which defines a single fat point in Pn. By what
we saw in the last lecture, and since I is a monomial ideal, we have:

I−1 = k − span of {yβ | xβ /∈ I} .

Thus, to know I−1 it suffices to know exactly which monomials are not in I.
Clearly, It = (0) for t ≤ '. Thus

(I−1)t = St for t ≤ '.

(It will help, in describing the rest of I−1 if we write T = k[y1, . . . , yn]).

Let’s group the monomials of St according to the power of y0 which divides them. If
we do that we get:

St =< yt
0 > ⊕ < yt−1

0 T1 > ⊕ · · · ⊕ < yt−#
0 T# > ⊕

[
< yt−(#+1)

0 T#+1 > ⊕ · · · ⊕ Tt

]

Notice that everything inside the large brackets is in ℘#+1 and the monomials in the
first part of the expression above, are not. I.e. we have

[
(℘#+1)−1

]
t
=< yt

0 > ⊕ < yt−1
0 T1 > ⊕ · · ·⊕ < yt−#

0 T# >

= yt−#
0 S# .

To have this all in a formal statement, we write
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Proposition 3.1: Let ℘ = (x1, . . . , xn) ⊂ k[x0, . . . , xn] = R and let S = k[y0, . . . , yn]. If
' ≥ 0 then

(℘#+1)−1 = S0 ⊕ S1 ⊕ · · · ⊕ S# ⊕ y0S# ⊕ y2
0S# ⊕ · · · .

Now, suppose that P is an arbitrary point in Pn, i.e. P = [p0 : p1 : . . . : pn] where,
with no loss of generality, we may as well assume that p0 *= 0 (the discussion would proceed
in the same way for any non-zero coordinate of P ). If we then set p0 = 1, i.e. fix all the
projective coordinates of P , we can write (abusively) P = [1 : p1 : . . . : pn]. Then, the
ideal of P in the {xi}-coordinates is ℘ = (x1 − p1x0, . . . , xn − pnx0).

Thus, if we make the change of variables:

x′
0 = x0

x′
1 = x1 − p1x0

...
x′

n = xn − pnx0

then the point P has {x′}-coordinates [1 : 0 : . . . : 0]. If we let y′
0, . . . , y

′
n in S1 be the dual

basis to x′
0, . . . , x

′
n in R1, then we know precisely how to describe the inverse system of

℘#+1, in the {y′
i}-coordinates:

[
(℘#+1)−1

]

t

=






(y′
0)t−#S# if t ≥ '

St if t < '
.

All that remains is a description of y′
0 in the {yi} -coordinate system.

By general nonsense about bilinear forms (and the fact that the matrix of the pairing
between R1 and S1, with respect to the bases {xi} and {yi} respectively, is In+1 ) we get
that




x′

0
...

x′
n



 = A




x0
...

xn



 where A =





1 0 0 · · · · · · 0
−p1 1 0 · · · · · · 0
−p2 0 1 · · · · · · 0

...
...

...
...

...
...

−pn 0 0 · · · · · · 1





and hence that the dual basis is



y′
0
...

y′
n



 = (A−1)t




y0
...

yn



 .
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Since

(A−1)t =





1 p1 p2 · · · · · · pn

0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
...

...
...

...
...

...
0 0 0 · · · · · · 1





we obtain
y′
0 = y0 + p1y1 + · · · + pnyn

y′
1 = y1

...
y′

n = yn

.

In Summary: If P = [p0 : p1 : . . . : pn] ∈ Pn and P ↔ ℘, then

(℘#+1)−1 = S0 ⊕ S1 ⊕ · · · ⊕ S# ⊕ LS# ⊕ L2S# ⊕ · · ·

where L = p0y0 + p1y1 + · · · + pnyn.

Coupling these observations with Proposition 2.6 gives the following theorem (which
I first saw in a paper of Ensalem and Iarrobino):

Theorem 3.2: Let P1, · · · , Ps be points of Pn and suppose that Pi = [pi0 : pi1 : . . . : pin].
Let

LPi = pi0y0 + pi1y1 + · · · + pinyn ∈ S = k[y0, . . . , yn] .

Then, if I = ℘n1+1
1 ∩ · · · ∩ ℘ns+1

s ⊂ R = k[x0, . . . , xn] we have:

(I−1)j =






Sj for j ≤ max {ni}

Lj−n1
P1

Sn1 + · · · + Lj−ns
Ps

Sns for j ≥ max {ni + 1}
.

By the first remark after Proposition 2.5 we have, as an immediate corollary,

Corollary 3.3: Let I = ℘n1+1
1 ∩ · · · ∩ ℘ns+1

s ⊆ R = k[x0, . . . , xn] be as above, where
℘i ↔ Pi.

20



Then
H(R/I, j) = dimk(I−1)j

=






dimk Rj for j ≤ max {ni}

dimk < Lj−n1
P1

Sn1 , . . . , L
j−ns
Ps

Sns > for j ≥ max {ni + 1}
.

Notice that the Theorem and the Corollary above show that there is a very strong
relationship between the Hilbert function of a set of fat points and ideals generated by
powers of linear forms.

More precisely, the last expression in Theorem 3.2 says that

(I−1)j is the jth graded piece of the ideal (Lj−n1
P1

, . . . , Lj−ns

Ps
) for j ≥ max{ni + 1} .

Thus, associated to the ideal of fat points

I = ℘n1+1
1 ∩ ℘n2+1

2 ∩ . . . ∩ ℘ns+1
s

is an infinite family of ideals, generated by powers of linear forms, each of which has a
graded piece which interests us. These ideals will be denoted (for j ≥ max{ni + 1});

jJ = (Lj−n1
P1

, . . . , Lj−ns

Ps
) .

Thus,
(I−1)j = (jJ)j (†)

Notice also that the ideals jJ all have radical

√
jJ = (LP1 , . . . , LPs) .

But, what is this last ideal?

Proposition 3.4: Let P1, . . . , Ps ∈ Pn and let LP1 , . . . , LPs ∈ S = k[y0, . . . , yn] be the
linear forms associated to these points. The following are equivalent:

1) P1, . . . , Ps span a Pt ⊆ Pn;
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2) dimk〈LP1 , . . . , LPs〉 = t + 1;
3) ht(LP1 , . . . , LPs) = t + 1.

Proof: 2) ⇔ 3) is obvious.
1) ⇔ 2) : Now, P1, . . . , Ps span a Pt ⊆ Pn ⇔ if I = ℘1 ∩ . . .∩℘s then dimk I1 = n− t.

This last occurs, ⇔ H(R/I, 1) = t + 1 and this occurs ⇔ (Proposition 2.5, Remark 1)
dimk(I−1)1 = t + 1.

But, (I−1)1 = 〈LP1 , . . . , LPs〉 and so we are done.

Let’s consider these ideas, in some detail, in the following example.

Example 3.5: Let P1, . . . , P6 be 6 points of P2 with no 3 on a line and the 6 not on a
conic. Write

I = ℘2
1 ∩ ℘2

2 ∩ ℘2
3 ∩ ℘4 ∩ ℘5 ∩ ℘6 ⊆ R = k[x0, x1, x2] .

(This is an ideal of multiplicity 3 + 3 + 3 + 1 + 1 + 1 = 12.)
Let L1, . . . , L6 ∈ S = k[y0, y1, y2] be the linear forms associated to P1, . . . , P6 respec-

tively. Then, for j ≥ 2 we have the ideals

2J = (L1, L2, L3, L2
4, L

2
5, L

2
6)

3J = (L2
1, L

2
2, L

2
3, L

3
4, L

3
5, L

3
6)

4J = (L3
1, L

3
2, L

3
3, L

4
4, L

4
5, L

4
6)

5J = (L4
1, L

4
2, L

4
3, L

5
4, L

5
5, L

5
6)

...
etc.

From our comments above, the ideals jJ always have
√

jJ = (y0, y1, y2).
Let’s see what we can say about the Hilbert functions of all the ideals above. We

know that H(R/I,−) is eventually 12 and (since
√

jJ = (y0, y1, y2) for all j) H(S/jJ,−)
is eventually 0.

Now 2J = (L1, L2, L3) = (y0, y1, y2), and that’s about all there is to say! It follows
from this that there is no conic in I, but that is something it was equally easy to deduce
from a knowledge of I.
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Notice also that there is no cubic in I, i.e. H(R/I, 3) = 10. This gives that
dimk(3J)3 = 10. Thus, H(S/3J,−) : 1 3 3 0 · · ·.

I claim that H(R/I, 4) = 12. To see this, start with the ideal (of multiplicity 9),
℘2

1 ∩℘2
2 ∩℘2

3. This contains a unique (up to scalar) cubic (draw the curve!), and no conics.
Thus, the Hilbert function of this ideal is 1 3 6 9 9 · · ·. Since P4 is on none of the lines
which form the cubic in the ideal, ℘2

1∩℘2
2 ∩℘2

3∩℘4 has Hilbert function 1 3 6 10 10 · · ·.
It is equally easy to find a quartic in ℘2

1 ∩ ℘2
2 ∩ ℘2

3 ∩ ℘4 which is not in ℘5 and so
℘2

1 ∩ ℘2
2 ∩ ℘2

3 ∩ ℘4 ∩ ℘5 has Hilbert function 1 3 6 10 11 11 · · ·. Finally the quartic
consisting of: the cubic above and the line through P4 and P5 doesn’t contain P6, so
℘2

1 ∩ ℘2
2 ∩ ℘2

3 ∩ ℘4 ∩ ℘5 ∩ ℘6 has Hilbert function 1 3 6 10 12 12 · · ·, as we wanted to
show.

This gives that dimk(4J)4 = 12. Thus, the Hilbert function of 4J begins 1 3 6 7 3 ? .
We need to know dimk(4J)5. But, from Theorem 3.2, since

(4J)5 = 〈L3
1S2, L

3
2S2, L

3
3S2, L

4
4S1, L

4
5S1, L

4
6S1〉

we have
dimk(4J)5 = H(R/℘3

1 ∩ ℘3
2 ∩ ℘3

3 ∩ ℘2
4 ∩ ℘2

5 ∩ ℘2
6, 5) .

Now it is easy to se that any quintic in the ideal ℘3
1 ∩℘3

2 ∩℘3
3 ∩℘2

4 ∩℘2
5 ∩℘2

6 is a conic
times the cubic (draw picture!), where the conic is in ℘1 ∩ ℘2 ∩ ℘3 ∩ ℘2

4 ∩ ℘2
5 ∩ ℘2

6. But,
there are no conics in this last ideal. Thus, dimk(4J)5 = 21 and we know the complete
Hilbert function of 4J , namely

H(S/4J,−) = 1 3 6 7 3 0 · · ·

(Notice that in this last calculation we observed another interesting fact - which is quite
general): each of the ideals jJ is associated to a finite number of ideals of fat points. In
the case above we had:

(4J)4 ↔ (℘2
1 ∩ ℘2

2 ∩ ℘2
3 ∩ ℘4 ∩ ℘5 ∩ ℘6)4

(4J)5 ↔ (℘3
1 ∩ ℘3

2 ∩ ℘3
3 ∩ ℘2

4 ∩ ℘2
5 ∩ ℘2

6)5

the fact that the righthand space had dimension 0 was enough to finish this list.)

23



Similarly,
a) (5J)5 ↔ (℘2

1 ∩ ℘2
2 ∩ ℘2

3 ∩ ℘4 ∩ ℘5 ∩ ℘6)5

b) (5J)6 ↔ (℘3
1 ∩ ℘3

2 ∩ ℘3
3 ∩ ℘2

4 ∩ ℘2
5 ∩ ℘2

6)6

c) (5J)7 ↔ (℘4
1 ∩ ℘4

2 ∩ ℘4
3 ∩ ℘3

4 ∩ ℘3
5 ∩ ℘3

6)7

etc.

until the ideal of fat points on the right hand side has nothing in it. ( In this case, the list
ends, as the piece (∗∗)7 = (0) ). Notice also that since we know the Hilbert function of I

in degree 5, then dimk(5J)5 = 12, and in the last set of objects above, only the dimension
of b) has yet to be calculated. I’ll leave that calculation ( you should only find one thing
in the ideal!) as an Exercise.

So, (in a way that I have not made precise) the two families of ideals

{ ℘2+t
1 ∩ ℘2+t

2 ∩ ℘2+t
3 ∩ ℘t

4 ∩ ℘t
5 ∩ ℘t

6 | t ≥ 0, t ∈ Z} ⊆ R

and

{ (Ls
1, L

s
2, L

s
3, L

s+1
4 , Ls+1

5 , Ls+1
6 ) | s ∈ Z, s ≥ 1} ⊆ S

are intricately related to each other. Of course, this example can be made quite general,
and clearly there are general statements here waiting to be made. The relationship between
such infinite families of ideals has not been studied very extensively, although Iarrobino
has some results in this direction of study.

Remarks: 1) Inasmuch as there is an algorithm for calculating the Hilbert function of
any ideal of the form I = ℘n1

1 ∩ . . . ∩ ℘n6
6 (when the ℘i correspond to points with the

property that no three are on a line and the six are not on a conic) there is, consequently,
an algorithm for finding the Hilbert function of any ideal of the form (Lm1

1 , . . . , Lm6
6 ) for

the 6 corresponding linear forms. This has been studied very little.

2) I’m not aware of any results about the Hilbert function of ideals of the form

(Ln1
1 , . . . , Lnt

t )
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which don′t come from a knowledge of the Hilbert function of ideals of fat points. I.e. the
“balance of trade” between these two studies is that theorems about fat points are the
major “export” item!

Corollary 3.3 takes on a particularly nice form when all the ni in it are equal.

Corollary 3.6: Let P1, . . . , Ps be points in Pn, where Pi ↔ ℘i ⊆ R = k[x0, . . . , xn]. Let

I = ℘a+1
1 ∩ . . . ∩ ℘a+1

s .

Then, for j ≥ a + 1, we have:

H(R/I, j) = dimk

[
(Lj−a

1 , . . . , Lj−a
s )

]

j

.

As another simple corollary we can deduce a very nice (and undoubtedly well known)
fact about the forms of degree d in a polynomial ring.

Corollary 3.7: Let L1, . . . , Ls be a general set of linear forms in S = k[y0, . . . , yn]. Then,
for any integer j, the vector space

V = 〈Lj
1, . . . , L

j
s〉

is as big as it can be, i.e.
dimk V = min{s,dimk Sj} .

Proof: Let P1, . . . , Ps be s general points in Pn. Let L1, . . . , Ls be the linear forms in
S = k[y0, . . . , yn] corresponding to these points. Then, from Corollary 3.6 we have:

H(R/℘1 ∩ . . . ∩ ℘s, j) = dimk(Lj
1, . . . , L

j
s)j .

But, it is well known that a general set of s points in Pn has Hilbert function

min{s,dimk Sj} = min{s,
(

j + n

n

)
} for each j ,

which finishes the proof.
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Lecture 4: Waring’s Problem

It follows from the corollary we proved at the end of the last lecture (Corollary 3.7),
that if t = dimk Sj and we choose t general linear forms in S1, then every form in Sj is a
linear combination of the jth powers of these fixed linear forms.

This last remark is very reminiscent of the so-called Waring Problems for integers, and
I cannot pass up the opportunity to make a small side-trip to talk about these problems.

In 1770 E. Waring (in his paper Meditationes Algebricae) stated, without proof, the
following:

1) Every natural number is a sum of (at most) 9 positive cubes;
2) Every natural number is a sum of (at most) 19 biquadratics;

and so on .....

It is believed that Waring believed (!) that for every natural number j ≥ 2, there is
a number N(j) such that every positive integer n can be written:

n = aj
1 + · · · + aj

N(j) where ai ≥ 0 .

Definition: If such an N(j) exists, we call the least such g(j).

So, Waring was asserting:
g(3) = 9

g(4) = 19

and g(j) exists.

(Note, of course, Lagrange’s famous theorem which says that g(2) = 4).

In fact, Waring’s belief was justified by Hilbert.

Theorem: (Hilbert - 1909) g(j) exists for every j ≥ 2.

In fact, it is now known that:
a) g(3) = 9 and g(4) = 19, as Waring stated (although this last equality was only

proved in the last few years).
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b) When j > 4, there are at most three possibilities for g(j) (they are too complicated
to write down here). But, to give you some idea of the “state of the art” on this problem,
there is the following theorem:

Theorem: If, for a given j > 4, we have

2j

{
(3/2)j

}
+
[
(3/2)j

]
≤ 2j (∗)

(where [x] = the greatest integer ≤ x and {x} = the fractional part
of x )
then

g(j) = 2j +
[
(3/2)j

]
− 2 .

E.g. (∗) is true for j = 5, so g(5) = 25 − 7− 2 = 37.

Moreover, it is believed that (∗) holds for every j and it is known that (∗) does not
hold, for at most, a finite number of j. It appears as if the problem of determining g(j) is
close to a final resolution.

However, the problem above is only one of the Waring problems – the so-called “Little”
Waring Problem! The “Big” Waring problem starts with the observation that although
g(3) = 9, only the numbers 23 and 239 actually require 9 cubes for their representation
and only 15 other numbers (the largest being 8042) actually require 8 cubes. So, one is
naturally lead to the following:

Definition: Let G(j) be the least integer such that all sufficiently large integers are the
sum of ≤ G(j), jth powers of integers.

So, G(j) ≤ g(j) and, by the remarks above, G(3) ≤ 7. In fact, it is not known if
G(3) < 7, although it is known that G(4) = 16. In general, little is known about the
numbers G(j) (although e.g. G(6) ≤ 27, G(7) ≤ 36 etc). I just want to remark that this
is an area of very active research (see e.g. T.D. Wooley, Large Improvements in Waring’s
Problem: Annals Of Math., 135 (131-164) 1992).

It can sometimes be the case that G(j) = g(j). E.g. it follows from Gauss’s observation
that every number congruent to 7 mod(8) is a sum of 4 squares and not 3, that G(2) =
g(2) = 4.
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What about our context? i.e. that of homogeneous polynomials in a polynomial ring
over a field? Using the same notation as in the Waring Problem for Integers, we can very
naturally ask:

Does there exist an integer g(j) such that every element in Sj is a
sum of ≤ g(j) jth powers of linear forms?

The answer we can give is an immediate YES.

g(j) exists. Moreover, g(j) ≤ dimk Sj .

(This is immediate from Corollary 3.7.)

We can also consider an analogue to Waring’s “Big” problem in the following way:
let N =

(n+j
n

)
, then we can think of Sj as an AN (k), i.e. an affine space over k of dimension

N =
(n+j

j

)
and let

AN ⊇ Ut(j) = {F ∈ Sj | F = Lj
1 + · · · + Lj

t for Li ∈ S1} .

Definition: Let G(j) = the least integer t such that Ut = AN .

I am thinking of “closure in the Zariski-topology is the whole space” as the polynomial
analogue to “all sufficiently large integers” i.e. “all but a finite number of integers”.

What can we say about these numbers G(j) and g(j)? The theorems of Gauss and
Lagrange for squares of integers have analogous statements for polynomials.

Theorem 4.1: Let S = k[y0, y1, . . . , yn], where k is algebraically closed and the charac-
teristic of k is not 2, then G(2) = g(2) = n + 1.

(Note that since dimk S2 =
(n+2

2

)
= (n2 +3n+2)/2, this is a substantial improvement

over the trivial bound for g(2) given by Corollary 3.7.)

Proof: The proof is an immediate application of some standard facts from linear algebra.
Recall that every quadratic form in S2 can be associated to a symmetric (n + 1) ×

(n + 1) matrix and that every symmetric matrix can be diagonalized. The classification
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of quadratic forms, over an algebraically closed field of characteristic not 2, is particularly
simple: the only invariant is the rank of the associated matrix, i.e. the number of non-zero
diagonal entries (which in the case of an algebraically closed field, can all be chosen as 1).

Thus, after diagonalizing the associated matrix we see that every quadratic form is
a sum of ≤ n + 1 squares of linear forms, and the quadratic forms which are the sum of
< n+1 squares of linear forms are described as the symmetric matrices of rank ≤ n. But,
a (symmetric) matrix has rank t ≤ n ⇔ all minors of size (t+1)× (t+1) vanish. For these
minors to vanish, the entries of the matrix must satisfy certain polynomial equations in
the entries of the matrix. These equations define a proper closed (non-empty) subset of
S2. Thus, also G(2) = n + 1.

Remark: Notice that, in the notation above, the sets Ut(2) are closed for every t. My
impression is that this happens very infrequently. In fact, I’m not aware of any counterex-
ample to the following:

Conjecture 4.2: Suppose that j > 2. The set Ut(j) is closed ⇔ t ≥ g(j) or t = 1.

The fact that Ut(j) is closed for t ≥ g(j) is simply the definition i.e. in this case
Ut(j) = Sj . I will now explain why the statement is true when t = 1. This will give me an
opportunity to introduce some simple ideas about linear systems that we will need later.

Recall, we have S = k[y0, . . . , yn] and

U1(j) = {F ∈ Sj | F = Lj for some L ∈ S1} .

But, since k is algebraically closed, F = Lj ⇔ cF = (c1/jL)j . So, when looking at the set
of jth powers of linear forms in AN (k) = Sj (N =

(
n+j

n

)
), we may as well pass to the same

question in the projective space based on Sj , i.e. on P(Sj ).
Once we think of doing that, we recall the following: every F ∈ Sj defines a hyper-

surface of degree j in Pn; F and G define the same hypersurface in Pn ⇔ F = cG for some
c ∈ k, c *= 0. Thus, P(Sj) can also be thought of as representing (i.e parametrizing) the
hypersurfaces in Pn of degree j.

Let’s look at a specific example.
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Example: Let n = 2, i.e. S = k[y0, y1, y2]. Then S2 4 A6(k). What should we use as a
basis for this vector space?

Recall that a quadratic form in S corresponds to a symmetric 3 × 3 matrix. e.g. if
F = y2

0 + y0y1 + y2
1 + y1y2 + y2

2 then

F ↔




1 1/2 0

1/2 1 1/2
0 1/2 1



 .

So, a “natural” basis for S2 is

{y2
0 , 2y0y1, 2y0y2, y

2
1 , 2y1y2, y

2
2}

since these correspond (in the same order) to the matrices



1 0 0
0 0 0
0 0 0



 ,




0 1 0
1 0 0
0 0 0



 ,




0 0 1
0 0 0
1 0 0



 ,




0 0 0
0 1 0
0 0 0



 ,




0 0 0
0 0 1
0 1 0



 ,




0 0 0
0 0 0
0 0 1





which are a basis for the space of 3× 3 symmetric matrices and have entries only 0 and 1.
So,




a00 a01 a02

a01 a11 a12

a02 a12 a22



↔ F = a00y
2
0 + a01(2y0y1) + a02(2y0y2) + a11y

2
1 + a12(2y1y2) + a22y

2
2

↔ [a00 : a01 : a02 : a11 : a12 : a22] .

Now, suppose that F = L2 where L = α0y0 + α1y1 + α2y2. Then

L2 = α2
0y

2
0 + α0α1(2y0y1) + α0α2(2y0y2) + α2

1y
2
1 + α1α2(2y1y2) + α2

2y
2
2

↔ [α2
0 : α0α1 : α0α2 : α2

1 : α1α2 : α2
2]

↔




α2

0 α0α1 α0α2

α0α1 α2
1 α1α2

α0α2 α1α2 α2
2



 = AF =




α0

α1

α2



 (α0 α1 α2 ) .

Note: rkAF = 1. This corresponds to the fact, which we already know, that with a
change of bases in S1 (a new basis which has L as one of the basis vectors) the matrix AF

is congruent to




1 0 0
0 0 0
0 0 0



, which has rank = 1.
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Conversely, any 3×3 symmetric matrix of rank = 1 corresponds to a quadratic form F

which is the square of a linear form. Thus, at least in the case of 3 variables, the set U1(2) is
a closed subset of the space P5, since if we use the indeterminates Z00, Z11, Z22, Z01, Z02, Z12

in P5, then U1(2) is nothing more than the closed subset of P5 defined by the vanishing of
the equations which make the matrix




Z00 Z01 Z02

Z01 Z11 Z12

Z02 Z12 Z22



 have rank 1.

I.e. which make the principal 2× 2 minors vanish.
But, there is another way to view this set! If we order the monomials of S2 as

y2
0, y0y1, y0y2, y

2
1 , y1y2, y

2
2

we can use them to define a function

Φ : P2 → P5

by
Φ([a : b : c]) = [a2 : ab : ac : b2 : bc : c2] .

This map is the so-called Veronese Embedding of P2 into P5. (The image of P2 in P5, the
Veronese surface in P5, was the first surface (not in P3) which was studied in great depth.)
So, what we have seen is that the Veronese surface in P5 “IS” the set of squares of linear
forms from S = k[y0, y1, y2].

I won’t go through all the details here, but what we did in this example is completely
general.

I.e. Let S = k[y0, y1, . . . , yn] and consider the space Sj and a basis for it (say given
by the monomials of degree j in S – in some order M1, . . . ,M(n+j

n )). Define a map

νj : Pn −→ PN (N =
(

n + j

n

)
− 1)

by
x −→ [M1(x) : . . . : M(n+j

n )(x)] .
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One proves that this map is an embedding and that the image is a closed subvariety of PN

defined by a collection of quadratic polynomials. This image, denoted νj(Pn), is also called
a Veronese variety. (Hartshorne, in his book, calls this variety the j-uple embedding of
Pn.) In a fashion analogous to what we did for the quadrics, we can show that:

the Veronese variety νj(Pn) is exactly the set of
jth-powers of linear forms from S1

.

(Take care, in this identification one has to “scale” the coordinates in PN by multinomial
coefficients, like we did with the “2’s” in the case when j = 2.)

Having said this about the Veronese varieties, νj(Pn), the question arises as to how
we should think about “sums” of jth-powers.

Recall that, quite generally, if P1 = [a0 : a1 : . . . : ar] and P2 = [b0 : b1 : . . . : br ] are
two distinct points of Pr then we can use the notation P1 + P2 to refer to all the points
on the line in Pr which connects P1 and P2. The way we do this, of course, is to say

P1 + P2 = {Q ∈ Pr | Q = [λa0 + µb0 : . . . : λar + µbr] where [λ : µ] ∈ P1} .

This is exactly the set of points on a line of Pr (or a “plane” in Ar+1, the set of all linear
combinations of the vectors v1 = (a0, . . . , ar) and v2 = (b0, . . . , br) except for 0).

So, if we want to speak about sums of two jth powers of linear forms in S, this is the
same thing as speaking about the “chord” to νj(Pn) which connects the two points, i.e. a
(non-degenerate) secant line of νj(Pn).

Similarly, if we want to speak about a sum of three jth powers, we will then be speaking
about a plane (i.e. a P2) in PN which contains 3 distinct points of νj(Pn). These are called
3− secant planes or 3− secant P2’s. If there is space enough in PN we can speak about
s− secant Ps−1’s, i.e. Ps−1’s which contain s distinct points of νj(Pn).

Thus, we can rephrase our two questions above in a geometric manner:

“The Little Waring Problem”: What is the least integer s such that every point of
PN (N =

(
j+n

n

)
− 1) is on a t− secant Pt−1 to t distinct points of νj(Pn) for some t ≤ s?

“The Big Waring Problem”: What is the least integers s such that the Zariski closure
(in PN ) of the points on

∪s
t=1(t− secant Pt−1)’s, (based on t distinct points of νj(Pn) ) = PN .
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After making some preliminary investigations of these problems in some special cases,
I will then give the results I know. Interestingly enough, there is an answer to the “BIG”
problem (which is due to Alexander - Hirschowitz) but I know of no answer to the “Little”
problem. (Although, in a recent paper of Ehreborg and Rota they speak of coming back
to this problem in a future paper.)

There is an enormous classical literature on these problems, with the names of Clebsch
(1860’s), Terracini, Lasker, Bertini, Severi, Palatini (1900’s), Wakeford (1920’s), Bronowski
(1930’s), and Reznick, Ehreborg and Rota (1990’s) figuring prominently in this study. I
will also try to say something about these works.

But, before I begin to get into a more detailed discussion of the t − secant Pt−1’s to
the Veronese varieties, it is necessary (and interesting) to get familiar with some of the
basic properties of these varieties. I’ll first do that.

In considering the Veronese varieties, νj(Pn), it is very important not to forget their
connecton with Pn itself. Let me illustrate what I mean by continuing with the concrete
example above of the Veronese surface, ν2(P2) ⊆ P5. We continue to use k[y0, y1, y2] for the
homogeneous coordinate ring of P2 and k[Z00, Z01, Z02, Z11, Z12, Z22] for the homogeneous
coordinate ring of P5.

Consider the quadratic form, F = 2y2
0 + y2

1 + y1y2 + y2
2 and the conic C that it defines

in P2. What about the image of this conic under the map ν2?
Let [a : b : c] ∈ C, i.e. 2a2 + b2 + bc + c2 = 0. Then

ν2[a : b : c] = [a2 : ab : ac : b2 : bc : c2] .

Claim: The point ν2[a : b : c] lies on the hyperplane of P5 defined by
the equation

HF = 2Z00 + Z11 + Z12 + Z22 = 0 .

(which is obvious, since 2a2 + b2 + bc + c2 = 0 .)
I.e. ν2(C) = ν2(P2) ∩ HF where HF is the hyperplane in P5 determined by F .

But, this example is completely general: if we are considering νj(Pn) ⊆ PN (N =(
n+j

j

)
− 1) then F ∈ Sj defines a hypersurface V (F ) ⊆ Pn and

νj(V (F )) = νj(Pn) ∩ HF
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where HF is the hyperplane of PN determined by F .
Thus, νj “converts” problems concerning intersections of hypersurfaces of degree j in

Pn into problems concerning intersections of hyperplanes in PN with the variety νj(Pn),
and conversely.

To see how this works in practice, let’s apply these ideas to make a calculation of the
degree of the Veronese surfaces, νj(P2).

Claim: The degree of the surfaces νj(P2) = j2.

Pf. Let S = νj(P2) ⊆ PN (N =
(
j+2
2

)
− 1). Like any surface in PN ,

the degree of S is the number of distinct points in which a general
PN−2 ⊆ PN neets S.

But, a PN−2 ⊆ PN is the zeroes of two independent linear forms
in PN . So, we want to know

HF1 ∩HF2 ∩ νj(P2) . (∗)

But, HFi ∩ νn(P2) corresponds to the zeroes of Fi in P2. So, the
common points to the three varieties in (∗) are: the points in P2

(corresponding to νj(P2)) at which V (F1) meets V (F2). I.e. V (F1) ∩
V (F2) in P2. But, for F1, F2 general forms of degree j in P2, Bezout’s
theorem gives that the intersection consists of j2 distinct points.

(Note: The same kind of argument will give that the degree of νj(Pn) = jn. )
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Lecture 5: Veronese Varieties

We saw, in the last lecture, that there is a connection between Waring’s problems
concerning the representation of a homogeneous form of degree j as a sum of jth powers
of linear forms and the geometry of certain secant varieties to the Veronese varieties. As
I mentioned then, I would like to spend a little time recovering some simple results about
these secant varieties.

Proposition 5.1: Let S = νj(Pn) ⊆ PN (N =
(j+n

n

)
− 1). A line of PN can meet S in

at most two points, i.e. the intersection is a subscheme (of P1 ) of multiplicity ≤ 2.

Proof: Since dim(S) +dim(P1) = n+1 is (usually) much smaller than N , we don’t expect
a line to meet S at all!

Now, a P1 in PN is the intersection of N − 1 linearly independent linear forms which
define hyperplanes HF1 , . . . ,HFN−1 . The intersection of this line with S corresponds to
the intersection, in Pn, of the hypersurfaces of degree j, V (F1), . . . , V (FN−1).

If we let X denote the subscheme of Pn in which these varieties meet, i.e. the subscheme
defined by the ideal (F1, . . . , FN−1)sat = I, then

dimk

(
(k[y0, . . . , yn]j/Ij

)
≤
(

n + j

n

)
−
[(

n + j

n

)
− 1− 1

]
= 2 .

What can we say about X, given that HX(j) ≤ 2 for j ≥ 2? Quite a bit!
First of all, by Macaulay’s Theorem (which describes the growth of the Hilbert function

of an ideal) we know that HX(j + t) ≤ 2 for all t ≥ 0. So,

1) if for some t we have HX(j + t) = 0, then this means that the line
we began with doesn’t meet νj(Pn) at all.
(So, we may as well suppose that HX(j + t) *= 0 for any t ≥ 0.)

2) if HX(j + t0) = 1 for some t0 ≥ 0 then, again by Macaulay’s
Theorem, this would imply that HX(j + t) = 1 for all t ≥ t0. Thus,
the Hilbert polynomial of X is a constant (= 1) and so X is a single
(reduced) point.
(This can occur: just take F1, F2, F3, F4 to be four independent conics
which have only one point in common and where two of the Fi pass
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through that point transversally. Then, the line in P5 obtained as the
intersection of the hyperplanes HFi intersects ν2(P2) simply.)

3) now suppose that HX(j + t) = 2 for all t ≥ 0. In this case, X is a
subscheme of PN of multiplicity 2 (the Hilbert polynomial must stay
at 2). Since I is a saturated ideal, S/I contains a non-zerodivisor of
degree 1 and so the Hilbert function of X has to be:

H(S/I,−) : 1 2 2 · · ·

(and indeed (F1, . . . , FN−1)sat is much bigger than (F1, . . . , FN−1)
although they agree in degree j).

It follows that dimk I1 = (n + 1) − 2 = n − 1. Thus, by mak-
ing a linear change of variables in S we may as well assume that
I1 = (y1, . . . , yn−1). Thus, S2/S1I1 =< y0

2, yn
2, y0yn > . Since

dimk(S2/I2) = 2 there are a, b, c ∈ k such that

ay2
0 + by2

n + cy0yn ∈ I2 .

Since the latter is a quadratic form in two variables we can write it
as L1L2 (where L1 and L2 are independent linear forms in y0 and yn)
or as L2

1. In the first case we might as well assume that L1L2 = y0yn

and the second that L2
1 = y2

n. So, up to a linear change of coordinates
in Pn either:

I = (y1, . . . , yn−1, y0yn)
(the ideal of 2 distinct points,)

or
I = (y1, . . . , yn−1, y2

n)
(the ideal of a scheme of multiplicity 2 supported at one point.)

In either case, the proposition is now complete.

Things get only slightly more complicated if we consider intersections with planes.

Proposition 5.2: Let S = νj(Pn) ⊆ PN (N =
(j+n

n

)
− 1).
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A plane in PN , if it meets S,
1) meets it in a plane conic (i.e. a rational normal curve in P2)

(in which case j = 2); or
2) meets it in a zero-dimensional scheme of multiplicity ≤ 3.

Proof: As above, a plane in PN (i.e. a P2 in PN ) is the intersection of N − 2 linearly
independent linear forms which define hyperplanes HF1 , . . . ,HFN−2 . The intersection of
this P2 with νj(Pn) is the subscheme of Pn defined by (F1, . . . , FN−2)sat = I and we know
that dimk(Sj/Ij) ≤ 3.

Case 1: If j ≥ 3 then Macaulay’s Theorem says that

dimk(Sj+t/Ij+t) ≤ 3

for all t ≥ 0. Since we are assuming that the P2 does meet S then I

defines a zero-dimensional subscheme of multiplicity ≤ 3. The same
argument works if j = 2 and dimk(S2/I2) ≤ 2.

Case 2: If j = 2 and dimk(S2/I2) = 3. Then, since 3(2) =
(3
2

)
we

have 3<2> =
(
4
3

)
= 4. So, there seem to be several possibilities for the

Hilbert function of S/I.

a). If the Hilbert function is eventually constant, then I defines a
zero dimensional scheme. Since I is a saturated ideal we either have:

α) H(S/I,−) = 1 3 3 · · ·

or
β) H(S/I,−) = 1 2 3 · · · s− 1 s s · · · .

In case α) we have that I defines a scheme of multiplicity 3 and we are
done. In case β), I is the ideal of a complete intersection subscheme
of multiplicity s, supported on a line L and I2 = (F1, . . . , FN−2)2.
But, I = (L1, . . . , Ln−1, G), where L1, . . . , Ln−1 define the line L and
G is a form of degree s ≥ 3. But then, I2 = (L1, . . . , Ln−1)2 and so
(F1, . . . , FN−2)sat = I is the ideal of a line, not a set of points. So
H(S/I,−) is not eventually constant.
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b). The Hilbert function of S/I is not eventually constant.
Since I is saturated the Hilbert function of S/I never decreases,

and if it is constant once it is constant ever after. This gives us
only one possible Hilbert function for S/I (since we know the Hilbert
function in degree 2), namely:

H(S/I,−) =: 1 2 3 · · · s s + 1 · · ·

But, in this case, I defines a scheme of dimension 1 and degree 1 (all
of that deducible from the Hilbert polynomial). But, from the fact
that 2 = H(S/I, 1) we find that I defines a line. The image of this
line under ν2 gives a plane conic in PN as we wanted to show.

Things get sucessively more complicated!

Proposition 5.3: Let S = νj(Pn) ⊆ PN where (N =
(
j+n

n

)
− 1).

A P3 in PN , if it meets S, meets it either in
a) a zero dimensional scheme of multiplicity ≤ 4;

or
b) a rational normal curve of degree 3 (in which case, j = 3);

or
c) a rational normal curve of degree 2, i.e. a plane conic (in which case, j = 2).

Proof: As before, we find F1, . . . , FN−3 ∈ Sj which are linearly independent and such that,
if I = (F1, . . . , FN−3)sat then dimk(Sj/Ij) ≤ 4.

Since 44 =
(4
4

)
+
(3
3

)
+
(2
2

)
+
(1
1

)
we have 4<4> = 4, and it follows from Macaulay’s

Theorem that
Case 1: If j ≥ 4 or if j = 3 and dimk(S3/I3) ≤ 3 or if j = 2 and
dimk(S2/I2) ≤ 2 then (assuming that our original P3 meets S), I

defines a zero dimensional subscheme of multiplicity ≤ 4.

Case 2: If j = 3. Then we may assume that I3 =< F1, . . . , FN−3 >

and dimk(S3/I3) = 4. Now, 43 =
(4
3

)
and so 4<3> =

(5
4

)
= 5. Since

the Hilbert function cannot decrease, we have that:

H(S/I,−) = 1 2 3 4 a ? ?
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where the only possibilities for a are 4 or 5.
If a = 4 then I defines a zero dimensional scheme of multiplicity

4 and we are done.
If a = 5: then either H(S/I,−) continues to grow by 1 – in which

case I is the ideal of a line in Pn, which is taken by ν3 into a rational
normal curve of degree 4 (and we are done) – or the Hilbert function
stops growing at some point.

In that case I would describe a set of ≥ 5 points on a line of Pn.
If (L1, . . . , Ln−1) = J is the ideal of this line, then (since the points
are on a line)

I3 =< F1, . . . , FN−3 >= (L1, . . . , Ln−1)3

and so (F1, . . . , FN−3)sat = J , not I (the ideal of points!). Thus, this
case does not occur.

Case 3: j = 2.
α) We first consider the situation when H(S/I, 2) = 3. Then

H(S/I,−) =: 1 2 3 a ?

where a = 3 or a = 4. If a = 3 then I describes a zero dimensional
sheme of multiplicity ≤ 3 and we are done. If a = 4 there are two
possibilities: either the Hilbert function continues to grow by 1 (the
maximum possible) or it does not. In the first instance we obtain that
I is the ideal of a line in Pn and then ν2 of that line is a plane conic
(and we are done). In the second instance we obtain that I describes
a set of ≥ 4 points on a line. If, as in case 2), we let J denote the
ideal of that line, then:

I2 = J2 "< F1, . . . , FN−3 >

and so (F1, . . . , FN−3)sat = J and not I, so this is impossible.

β) Let H(S/I, 2) = 4. Since 42 =
(3
2

)
+
(1
1

)
we have 4<2> =

(4
3

)
+
(2
2

)
=

5. So, we must have:

H(S/I,−) = 1 3 4 a ?
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where a = 4 or a = 5.
If a = 4 then I describes a zero dimensional scheme of multiplicity

4 in Pn and we are done.
If a = 5 there are two possibilities: either H(S/I,−) continues

to grow by 1 or it stops growing at some point. In the first instance
we obtain, by examining the Hilbert polynomial, that I describes a
curve of degree 1, i.e. a line. But, there are not enough linear forms
in I to give a line! So, this case cannot occur and we must assume
that I describes a zero dimensional subscheme of multiplicity s ≥ 5.

Now, the linear forms in I describe a plane, and we can factor
out those forms and assume that our scheme lives in P2. From the
Hilbert function we see that the ideal of the scheme contains two
quadrics. These two quadrics either have a linear factor in common
(in which case the saturation of the ideal generated by the quadrics
F1, . . . , FN−3 is the ideal of that line, and so cannot occur with our
hypothesis.) or the two quadrics have no common linear form. In
the later case, the scheme defined by those two quadrics cannot have
multiplicity > 4. Since we have that the multiplicity is at least 5, this
case cannot occur either and we are finished with the proof. 67

(che fatica!)

Warning: Notwithstanding the apparent pattern that the two results above seem to
demonstrate, it is not necessarily true that if we have νj : Pn −→ PN and write S = νj(Pn)
that a Pt ⊆ PN , if it meets S in a zero dimensional scheme, meets it in a scheme of
multiplicity ≤ t + 1. Consider the case (among many) of ν3 : P3 → P19 and consider a
P16 ⊂ P19 which corresponds to a 3 dimensional subspace of cubics which are a regular
sequence. Such a P16 meets S in exactly 27 points of P3.

I don’t know, for a given t, what the maximum multiplicity of intersection a Pt in PN

can have with S (always assuming that the intersection is zero dimensional). It seems to
me one should be able to do this for P2, but perhaps it is even known in general.

Remark: Before I finish off this circle of ideas and explain the solution to the “Big”
Waring problem, I want to show that U2(3) is not a closed set, i.e. the polynomials in
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S = k[y0, y1, y2] of degree three which are a sum of two cubes of linear forms do not fill up
the chordal variety to ν3(P2) ⊂ P9.

The idea here (due to Marvi Catalisano) is to show that the points of the tangent
planes to ν3(P2) = S are all in the closure of the set of “true” secant lines to S, but are
not themselves on any “true” secants.

So, let P ∈ ν3(P2) = S and let Π be the tangent plane to S at P . It is not difficult to
see that Π meets S at P in a subscheme of P9 of multiplicity ≥ 3 and that any line in Π,
through P , meets S at P in a subscheme of P9 of multiplicity at least 2.

Now, let Q ∈ Π (Q *= P ). I want to show that Q is not on a “true” secant line, i.e.
the cubic form in S3 which corresponds to Q is not the sum of two cubes of linear forms.

Suppose it were. Then we could find P1, P2 ∈ S such that the line through P1 and
P2 meets Π at Q. Let Π′ be the plane containing the intersecting lines: P1P2 and PQ. Π′

meets S at least once at P1 and at P2 and at least twice at P . I.e. its intersection with S
is a subscheme of P9 of multiplicity at least 4. But, by Proposition 5.2 (note that j = 3 in
our case), this is impossible. That contradiction finishes off the remark.

Aside: For those of you who have a problem with the “intersection” argument I offer the
following extra remarks which may make the argument above more palatable!

Make a change of coordinates so that P = [1 : 0 : . . . : 0] ∈ P9

and the tangent plane Π has defining ideal (y1, . . . , y7). Let ℘ ⊆
S = k[y0, . . . , y9] be the prime ideal which defines S and let ℘̃ be
the dehomogenization of ℘ with respect to y0. If f ∈ ℘̃ then f =
f1 + · · ·+ fr where fi ∈ R = k[y1, . . . , y9] has degree i (there is no f0

since f vanishes at P = (0, . . . , 0)). The statement that Π has defining
ideal (y1, . . . , y7) means that the vector subspace of R1 spanned by
the linear parts of the f ∈ ℘̃ is that generated by y1, . . . , y7.

So, to see “how much” Π meets S at P , we consider

k[y1, . . . , y9](y1,...,y9)

(y1, . . . , y9, ℘̃)

This is easily seen to be isomorphic to

k[y8, y9](y8,y9)

(℘̃′)
= B
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where ℘̃′ is obtained from ℘̃ by setting y1 = · · · = y7 = 0 in ℘̃. By
our assumption about the tangent plane, this kills all the linear parts
of elements of ℘̃ and so dimk B ≥ 3 (with 1, y8, y9 definitely linearly
independent and outside ℘̃′.

Now suppose we take a line L in the plane Π (w.l.o.g. assume
the line is defined by the ideal (y1, . . . , y7, y8). Then

k[y1, . . . , y9](y1,...,y9)

(y1, . . . , y8, ℘̃)
4

k[y8, y9](y8,y9)

(y8, ℘̃′)

and this latter clearly has dimk ≥ 2 (with 1, x9 clearly independent
and outside (y8, ℘̃′).

Now take any other plane, besides Π, which contains L (again,
with no loss of generality we can assume this other plane is defined
by the ideal (y1, . . . , y6, y8)). Then,

k[y1, . . . , y9](y1,...,y9)

(y1, . . . , y6, y8, ℘̃)

When we now set y1 = · · · = y6 = y8 = 0 in ℘̃, and call the resulting
ideal ℘̃′′, then it has elements all of the form

αy7 + f̃2 + · · · + f̃r where f̃i has degree i in k[y7, y9]

Thus
dimk

k[y7, y9](y7,y9)

(℘̃′′)
≥ 2

(with 1, y9 linearly independent and outside the ideal.)
This is enough to justify the argument above once we note that

if q is ℘-primary (where q and ℘ are homogeneous ideals in S) then

e(q) = e(℘) dimA℘/℘A℘
(A℘/qA℘) .

I now want to explain how to obtain the solution to Waring’s Big Problem for homo-
geneous polynomials.
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Let S = k[y0, . . . , yn]. We want to know which elements of Sj can be written as a sum
of s − jth powers of linear forms. This is the same thing as understanding the image of
the map:

Φ : S1 × · · · × S1︸ ︷︷ ︸
s−times

−→ Sj

given by
Φ(L1, . . . , Ls) = Lj

1 + · · · + Lj
s .

If we view S1 as An+1(k) and Sj as AN(k) (where N =
(n+j

n

)
) then Φ can be seen as

a polynomial map
Φ : As(n+1) −→ AN (k) .

We are most interested in knowing the dimension of the image of this map. The way we
will do this is to consider the differential of the map Φ, i.e dΦ.

Recall that dΦ is a function which, for every point P ∈ As(n+1), gives a linear trans-
formation (dΦ)(P ), from the tangent space of As(n+1) at P to the tangent space of AN at
Φ(P ) i.e.

(dΦ)(P ) := dΦ|P : TP (As(n+1)) −→ TΦ(P )(AN )

Since the tangent space to At at any of its points is again At, we have that

dΦ|P : As(n+1) −→ AN .

Thus, if we know the (generic) rank of these linear transformations, we’ll know the
dimension of the image.

So, for a given point P , how do we calculate the differential of Φ at that point? i.e.

given v ∈ TP (As(n+1)) how do we find
[
(dΦ)|P

]
(v)?

The usual way to do this is to find a curve C through the point P , whose tangent
vector at P is v, and then take the curve Φ(C) and find its tangent vector at Φ(P ).

So, pick a point P = (L1, . . . , Ls) ∈ As(n+1) and a vector v ∈ TP (As(n+1)) 4 As(n+1).
We write v = (M1, . . . ,Ms) where we think of the Mi as elements of An+1 for i = 1, . . . , s

(i.e. we think of the Mi as elements of S1).
Consider the following (parametrized) curve in As(n+1) through P , with tangent vector

v at P :
t −→ (L1 + M1t, L2 + M2t, . . . , Ls + Mst)
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(i.e. a straight line through P in the direction v.)
What is the image of this curve?

Φ(L1 + M1t, L2 + M2t, . . . , Ls + Mst) =
s∑

i=1

(Li + Mit)j .

We can find the tangent vector, in AN , to Φ(C) at Φ(P ) as follows:

d

dt
(

s∑

i=1

(Li + Mit)j) =
s∑

i=1

j(Li + Mit)j−1Mi

and if we evaluate this when t = 0 we find that the tangent vector to Φ(C) at Φ(P ) is
∑s

i=1 jLj−1
i Mi.

Thus, as we let v = (M1, . . . ,Ms) vary over the whole space As(n+1), the tangent
vectors we get vary over all the forms in the vector space < Lj−1

1 S1, . . . , Lj−1
s S1 > . I.e.

the rank of the differential at P = (L1, . . . , Ls) is dimk < Lj−1
1 S1, . . . , Lj−1

s S1 > .

Putting together everything we have seen up to this point, we obtain the following:

Theorem 5.5: Let L1, . . . , Ls be linear forms in S = k[y0, . . . , yn] where

Li = ai0y0 + ai1y1 + . . . + ainyn

and let P1, . . . , Ps ∈ Pn(k) where

Pi = [ai0 : . . . : ain] .

Moreover, let Pi ↔ ℘i ⊂ S.
Let

Φ : S1 × · · · × S1︸ ︷︷ ︸
s−times

−→ Sj be given by Φ(L1, . . . , Ls) = Lj
1 + · · · + Lj

s .

then

rk (dΦ)|(L1,...,Ls) = dimk < Lj−1
1 S1, . . . , L

j−1
s S1 >= H

(
S

℘2
1 ∩ . . . ∩ ℘2

s
, j

)
.
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Lecture 6: The Big Waring Problem

As we saw in the last lecture, if we want to know the dimension of the variety in
P(Sj) = PN , (N =

(j+n
n

)
− 1), which is the closure of the set of forms in S = k[y0, . . . , yn]

of degree j which are the sums of ≤ s jth powers of linear forms, we need to know, for s

general points {P1, . . . , Ps} in Pn, the Hilbert function H(S/I, j), where I = ℘2
1 ∩ . . . ∩ ℘2

s

(℘i ↔ Pi, ℘i ⊂ S).
Since this variety in PN is a secant variety to the Veronese variety, (the closure of the

s−secant Ps−1’s to νj(Pn)), we shall introduce a notation for it which recognizes this fact.

Notation: Set S = k[y0, . . . , yn] and let P(Sj) = PN . The subvariety of PN which is the
closure of the set of forms in Sj which are the sum of ≤ s jth powers of linear forms,
will be denoted

Secs−1(νj(Pn)) .

So, Theorem 5.5 of the last lecture can be restated as follows:

Theorem 6.1: Let S = k[y0, . . . , yn] and let P1, . . . , Ps be a generic set of s points in Pn,
where Pi ↔ ℘i ⊆ S.

Then

dim (sec) = H

(
S

℘2
1 ∩ . . . ∩ ℘2

s

, j

)
− 1 = dimk

(
Sj

(℘2
1 ∩ . . . ∩ ℘2

s)j

)
− 1 .

Let me begin with a simple, but interesting, application of this result.

The rational normal curve in Pn:

In this case νj(P1) ⊆ Pj and Theorem 6.1 gives:

dim (Secs−1(νj(P1)) = dimk

(
Sj

(℘2
1 ∩ . . . ∩ ℘2

s)j

)
− 1

where S = k[y0, y1] and ℘i ↔ Pi are generic points of P1.
Now the Hilbert function of a set of fat points on a line was described completely

by Ed Davis and me in [Queen’s Papers in Pure and Applied Mathematics, No. 67,
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The Curves Seminar, Vol. III - The Hilbert Function of a Special Class of 1-dimensional
Cohen-Macaulay algebras] and then redone in a very elegant fashion by Brian Harbourne
in [Canad.Math.Soc.Conf.Proc. 6 (1986) - The geometry of rational surfaces and Hilbert
functions of points in the plane.]. The only part of those results that we need is the
following:

e(℘2
1 ∩ . . . ∩ ℘2

s) = 2s and dimk

(
Sj

(℘2
1 ∩ . . . ∩ ℘2

s)j

)
= 2s ⇔ j ≥ 2s− 1 .

So, let’s first consider the variety Sec1(νj(P1)) ⊆ Pj , i.e. the usual secant variety.
The “expected” dimension of this variety is three (choose 2 points on the curve νj(P1) and
then connect them with a P1).

By what we said above, we must consider the ideal ℘2
1 ∩ ℘2

2 in S = k[y0, y1]. This
ideal has multiplicity 4 and Hilbert function:

1 2 3 4 4 · · ·

So,
dim (Sec1(νj(P1)) = 3 ⇔ j ≥ 3 .

I.e. the secant variety (of lines) for the rational normal curve in Pn (for n ≥ 3) has
dimension 3. Obviously the rational normal curve in P2 cannot have any secant variety
with dimension 3! (Later in this lecture I will give the equations for some of these secant
varieties.) It follows that the general form of degree 3 in k[y0, y1] is a sum of two cubes of
linear forms.

What about the variety Sec2(νj(P1))? Since e(℘2
1∩℘2

2∩℘2
3) = 6, this ideal has Hilbert

function
1 2 3 4 5 6 6 · · ·

The “expected” dimension for Sec2(νj(P1)) is 5 and, we see from the Hilbert function,
that this is the dimension only for j ≥ 5. Note that again, this could not happen sooner.

It follows that Sec2(ν5(P1)) fills up P5 and that Sec2(ν6(P1)) is a hypersurface in P6

while Sec2(ν7(P1)) is of codimension 2 in P7 etc. We’ll give, later, the equations of some
of these varieties as well. Notice that, as before, we can therefore deduce that the general
form of degree 5 in k[y0, y1] is the sum of three 5th powers of linear forms.
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It is clear from these considerations that the “Big” Waring problem is relatively
easy for forms in k[y0, y1]. This appears to have been classically known. Ehrenborg
and Rota [Apolarity and Canonical Forms for Homogeneous Polynomials European Jo.of
Comb.,1993, Theorem 4.3] refer to it as a theorem of Sylvester. More precisely:

Sylvester’s Theorem: A general form of degree 2j − 1 in k[y0, y1] can be written as the
sum of j (2j − 1)st powers of linear forms.

(We saw this explicity for j = 1, 2 and the general case is evident from those two cases.)

There are many other classical facts that can be derived from Theorem 6.1. I have
chosen some specific examples to illustrate this. These examples are all cited in the paper
of Ehrenborg and Rota mentioned above (although the proofs there are given in a different
way). I want to give here, the “fat points” version of the proofs of these classical facts.

To obtain the results I am referring to, I will use two strong (and surprisingly ele-
mentary) results of Catalisano, Trung and Valla (Proc. AMS, vol. 118, 1993, 717-724 - A
sharp bound for the regularity index of fat points in general position.)

Recall that if I = ℘α1
1 ∩ . . . ∩ ℘αs

s ⊂ S = k[y0, . . . , yn] (where α1 ≤ · · · ≤ αs) is an
ideal of fat points in Pn then e(I) =

∑s
i=1

(
αi+n−1

n

)
is the multiplicity of I.

Theorem 6.2: (Catalisano-Trung-Valla)
Let I be as above and suppose that ℘i ↔ Pi. Write X = {P1, . . . , Ps} and suppose

that no t + 1 points of X lie on a Pt−1 for any t ≤ n (i.e. the points of X are in linearly
general position).

Then

1) H(S/I, j) = e(I) for all j ≥ max{α1 + α2 − 1,

[
n− 2 +

∑s
i=1 αi

n

]
} ;

2) if P1, . . . , Ps are points on a rational normal curve then

H(S/I, j) < e(I) for j < max{α1 + α2 − 1,

[
n− 2 +

∑s
i=1 αi

n

]
} .

As do Rota and Ehrenborg, I will follow the classic English style, adopting the brisk
terminology that has (unfortunately) passed into disuse: a form of degree p in the polyno-
mial ring in q variables will be called a “q-ary p-ic”.
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Proposition 6.3: A generic quarternary cubic can be written as a sum of 5 cubes. (i.e.
a general form of degree 3 in S = k[y0, y1, y2, y3] can be written as the sum of 5 cubes).

Proof: Since the Hilbert function of S begins:

1 4 10 20 35 · · ·

to prove this proposition we need only show, in view of Theorem 6.1, that if P1, . . . , P5 are
5 points of P3 that are chosen generically then, if we set

I = ℘2
1 ∩ . . . ∩ ℘2

5 , ℘i ↔ Pi we have H(S/I, 3) = 20 = dimk S3 .

But, we know e(I) = 20 and Theorem 6.2 gives that H(S/I, j) = 20 for

j ≥ max
{

2 + 2− 1,

[
3− 2 + 10

3

]}
= max{3, 3} = 3

if the points are chosen in linear general position. This suffices to prove the proposition.
67

Remark: I would like to know if every cubic form in S, above, is a sum of 5 cubes. I am
almost sure that this is not the case, but I don’t know either an algebraic or a geometric
proof of this fact. It would be interesting to have one.

Proposition 6.4: (Clebsch, 1867) The general ternary quartic cannot be written as the
sum of 5 fourth powers (i.e. the general form of degree 4 in S = k[y0, y1, y2] is not the sum
of five 4th powers).

Proof: Following the lines of the previous proposition, if we let P1, . . . , P5 be any five points
in P2 and let ℘i ↔ Pi, then e(℘2

1 ∩ . . . ∩ ℘2
5) = 15. So, it will suffice to show that

H

(
S

℘2
1 ∩ . . . ∩ ℘2

5

, 4
)

< 15 = dimk S4 .

for 5 generically chosen points of P2. But, as we observed in an earlier lecture, the unique
conic through 5 general points, doubled, gives a quartic in the ideal of fat points we are
considering. Using Bezout’s theorem, and the fact that the unique conic through 5 general
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points is irreducible, we see that this doubled conic is the only quartic in the ideal of fat
points. Thus, in this latter case,

H

(
S

℘2
1 ∩ . . . ∩ ℘2

5

, 4
)

= 14

and we are done. 67

Remark: This proof actually shows that the variety Sec4(ν4(P2)) is a hypersurface in
P(S4) = P14. It is interesting to think about the equation for this hypersurface.

I am deeply endebted to Prof. D. Gallarati (Genova) who explained to Marvi Catal-
isano and me the ideas behind the so-called “notation of Clebsch”, which is particularly
suited to dealing with the Veronese varieties and its secant varieties. Using this we were
able to find the equation of the hypersurface above, and also to explain several other
interesting facts about the Veronese varieties.

We shall have to make a small detour to deal with this notation and its implications.
First, consider (ordered) n-tuples of numbers, i.e.

{(i1, . . . , in) | i1 ≤ . . . ≤ is where ij ∈ {0, 1, . . . , s}} .

Note that these tuples are in 1 − 1 correspondence with the monomials of degree n in
k[y0, . . . , ys] as follows:

(i1, . . . , in) ↔ yi1yi2 . . . yin .

I.e.
(0, . . . , 0, 1) ↔ yn−1

0 y1

y0y
2
1y2y3 ↔ (0, 1, 1, 2, 3) etc.

If (i1, . . . , in) and (j1, . . . , jm) are two tuples as above, we form the (m + n)−tuple

(i1, . . . , in)(j1, . . . , jm)

by interlacing the ik’s and j#’s so that the numbers i1, . . . , in, j1, . . . , jm are again in order.
E.G. If s = 4, n = 3, m = 2, i.e. we choose from {0, 1, 2, 3, 4}. In this case

(0, 0, 3)(1, 2, 3, 4) = (0, 0, 1, 2, 3, 3, 4)
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(Notice how this composition is related to multiplication of monomials.)
Now, fix s and for each integer n, we order the n−tuples lexicographically and consider

the 1 ×
(
s+n

n

)
matrix Ms,n formed by the set of all the ordered n−tuples. For example,

for s = 2, n = 2 we have:

M2,2 = ( (0, 0) (0, 1) (0, 2) (1, 1) (1, 2) (2, 2) ) .

For fixed s and any m and n we can form the matrix

Mt
s,mMs,n =





(0, . . . , 0)︸ ︷︷ ︸
m−tuple

...
(s, . . . , s)︸ ︷︷ ︸
m−tuple





(
(0, . . . , 0)︸ ︷︷ ︸

n−tuple

· · · (s, . . . , s)︸ ︷︷ ︸
n−tuple

)

Example: 1) Let s = 2,m = n = 1.




(0)
(1)
(2)



 ( (0) (1) (2) ) =




(0, 0) (0, 1) (0, 2)
(0, 1) (1, 1) (1, 2)
(0, 2) (1, 2) (2, 2)





If we now think of the symbols (i, j) as variables we obtain a 3× 3 symmetric matrix
of variables: 


Z00 Z01 Z02

Z01 Z11 Z12

Z02 Z12 Z22



 (†)

I’ll do one more example:

2) Let s = 2, m = n = 2

Mt
2,2M2,2 =





(0, 0)
(0, 1)
(0, 2)
(1, 1)
(1, 2)
(2, 2)




( (0, 0) (0, 1) (0, 2) (1, 1) (1, 2) (2, 2) )
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=





(0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 2) (0, 0, 1, 1) (0, 0, 1, 2) (0, 0, 2, 2)
− (0, 0, 1, 1) (0, 0, 1, 2) (0, 1, 1, 1) (0, 1, 1, 2) (0, 1, 2, 2)
− − (0, 0, 2, 2) (0, 1, 1, 2) (0, 1, 2, 2) (0, 2, 2, 2)
− − − (1, 1, 1, 1) (1, 1, 1, 2) (1, 1, 2, 2)
− − − − (1, 1, 2, 2) (1, 2, 2, 2)
− − − − − (2, 2, 2, 2)





and writing these as variables

=





Z0000 Z0001 Z0002 Z0011 Z0012 Z0022

− Z0011 Z0012 Z0111 Z0112 Z0122

− − Z0022 Z0112 Z0122 Z0222

− − − Z1111 Z1112 Z1122

− − − − Z1122 Z1222

− − − − − Z2222




(††)

Notice that there are exactly
(s+m+n

s

)
different variables in this symmetric matrix (which

correspond to the monomials of degree m+n in k[y0, . . . , ys]) and that some of the variables
appear more than once in this array.

The usefulness of this notation comes from the following observations: if we let Zn,m =
Mt

s,nMs,m be the matrix of variables above, i.e. in N =
(
s+m+m

s

)
variables.

Claim: Consider S = vn+m(Ps) ⊆ PN−1 and let P ∈ S. Then
Zm,n(P ) is a matrix of rank 1.

Pf: The proof is a trick with the notation! Let a = [a0 : . . . : as] ∈ Ps.
If (i1, . . . , in) is an n-tuple as above, then write

a(i1,...,in) = ai1ai2 . . . ain .

So, if L = a0y0 + · · · + asys, then the (scaled) coefficients of Ln

are precisely

(a(0,...,0) a(0,0,...,0,1) · · · a(s,s,...,s)) := Ms,n(a)

So, Ln+m ↔ Mt
s,n(a)Ms,m(a) = Zm,n(Lm+n) and it is then obvious

that Zm,n(Lm+n) is a matrix of rank 1.
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Proposition 6.5: For every m,n such that m + n = j, the Veronese variety is contained
in the subvariety of PN−1 defined by the 2× 2 minors of the matrix

Mt
s,nMs,m = Zn,m

Remark: The formation of these matrices depends very much on the ordering chosen for
the monomials, while the final result does not. We’ve wondered to what extent different
orderings give different ideals of 2 × 2 minors. Note: nothing in this says that the 2 × 2
minors define the Veronese variety.

In exactly the same way we see that: if a ↔ L1 and b ↔ L2 then

Lm+n
1 + Lm+n

2 ↔Mt
s,n(a)Ms,m(a) + Mt

s,n(b)Ms,m(b) = Zm,n(Lm+n
1 + Lm+n

2 ) .

Since, if A1, . . . , Ar are all m×n matrices of rank 1 and r ≤ min{m,n} then
∑r

i=1 Ai

has rank ≤ r, it follows that the determinantal variety defined by the vanishing of the 3×3
minors of Zm,n contains the secant variety to S. We can obviously continue on in this way
and we obtain:

Theorem 6.6: Let Zn,m be the
(s+n

s

)
by

(s+m
s

)
matrix defined above, and let ' be a

positive integer so that ' < min{
(s+n

s

)
,
(s+m

s

)
}. Let S = νn+m(Ps) and let It be the ideal

defined by the t× t minors of Zm,n

Then
Sec#−1(S) ⊆ the variety defined by I#+1 .

Remarks:
a) If we look at the two examples we made above, then in the first case (matrix (†)) we have
the 3× 3 matrix whose 2× 2 minors actually define the Veronese surface in P5 (i.e ν2(P2))
and the determinant of that matrix defines the secant variety to this Veronese. Notice that
from this representation we find that the Veronese variety is a singular subvariety of the
secant variety and has multiplicity 2 in that variety.

b) In the same way, the determinant of the 6 × 6 matrix (††) gives the equation of the
hypersurface Sec4(ν4(P2)) in P14, which we wanted to find.
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Using (††) we find that
i) ν4(P2) ⊆ Sec4(ν4(P2)) is a singular subvariety of multiplicity 5;
ii) Sec1(ν4(P2)) ⊆ Sec4(ν4(P2)) is a singular subvariety of multiplic-
ity 4;
iii) Sec2(ν4(P2)) ⊆ Sec4(ν4(P2)) is a singular subvariety of multi-
plicity 3;
iv) Sec3(ν4(P2)) ⊆ Sec4(ν4(P2)) is a singular subvariety of multiplic-
ity 2.

c) If we look at the special case of n = 1 and m = j − 1 then we get an (s + 1)×
(j−1+s

s

)

matrix and this is the matrix whose 2 × 2 minors are known to generate the defining
ideal of the Veronese variety νj(Ps). We can also look at the minors of this matrix of size
≤ s + 1. We are not aware of any theorem which says that these give the defining ideal
of the appropriate secant variety, except for the case where s = 1, i.e. when the Veronese
variety is the rational normal curve. In these cases it is easy to see that the secant varieties
are all arithmetically Cohen-Macaulay and (using the Eagon-Nortcott resolution) one can
even find the minimal free resolution of the defining ideal of these varieties. One wonders
if all the secant varieties are arithmetically Cohen-Macaulay?

It may well be that many of these problems were solved over 100 years ago! It was
difficult to find any references to the problems I have mentioned, so if known, the results do
not seem to be in general circulation. (Although, just recently (April 1995) I was happy
to receive a copy of the Brandeis thesis of Michael Catalano-Johnson with interesting
theorems and some useful historical facts.)
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Lecture 7: The Big Waring Problem - Continued

Recall: We have been considering the following two Waring problems for forms in Sj,
S = k[x0, . . . , xn].

a) The “Little” Waring problem: find the least integer g(j) such
that every form F ∈ Sj is a sum of ≤ g(j) jth powers of linear forms.

b) The “Big” Waring problem: find the least integer G(j) such
that the general form F ∈ Sj is a sum of ≤ G(j) jth powers of linear
forms.

We also introduced the various secant varieties to the Veronese varieties, i.e. the
varieties Secs−1(νj(Pn)), which are the closure (in PN , where N =

(
j+n

j

)
− 1) of the set

∪{Ps−1 ⊂ PN |Ps−1 contains a set of s linearly independent points of νj(Pn)} .

We have seen that G(j) = the least integer s such that Secs−1(νj(Pn)) = PN and that

dim(Secs−1(νj(Pn)) = H

(
S

℘2
1 ∩ · · · ∩ ℘2

s
, j

)
− 1

where ℘i ↔ Pi ∈ Pn and {P1, · · · , Ps} is a generic set of s points of Pn.
We also saw that Secs−1(νj(Pn)) has an “expected” dimension; namely

min{sn + (s − 1) = s(n + 1)− 1,N}

but that this is not always acheived. (In such a case we shall say that the secant variety
is deficient .)

By the same token we have seen that

H

(
S

℘2
1 ∩ . . . ℘2

s

, j

)

has an expected value for every j; namely min{
(j+n

n

)
, s(n + 1)}, but that this value is not

always acheived either. The relationship between these “expectations” (and their failures)
was discussed above.
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We looked at one such failure in detail: specifically, we saw (in fact it was first noted
by Clebsch over a hundred years ago) that the general ternary quartic cannot be written
as a sum of 5 fourth powers of linear forms i.e Sec4(ν4(P2)) has dimension 13 (inside
P14) rather than being all of that enveloping space. Moreover, this fact comes from the
simple observation that 5 general points P1, . . . , P5 in P2 with corresponding ideal I =
℘2

1 ∩ · · · ∩ ℘2
5 ⊆ S = k[x0, x1, x2] has H(S/I, 4) = 14 (rather than the 15 we expected). In

fact, we found a degree 6 equation (the determinant of the 6× 6 symmetric matrix (††) of
the previous lecture) which contained the variety of 5-secant P4’s of ν4(P2).

To finish the discussion of that example, we should actually show that the determinant
is indeed the defining equation for Sec4(ν4(P2)) ⊆ P14 by showing, for example, that the
determinant is irreducible. Fortunately, Michael Catalano-Johnson has recently made a
lovely observation which asserts (in a special case) that Sect(νj(Pn)) (if it is not all of its
enveloping projective space) cannot lie on a hypersurface of degree t + 1. In particular
Sec4(ν4(P2)) cannot lie on a hypersurface of P14 of degree ≤ 5 and that finishes off the
discussion of that example.

Aside: Catalano-Johnson did not give us a proof for his observa-
tion, but Catalisano has found a simple argument (which is probably
what Catalano-Johnson had in mind). For completeness I will include
Catalisano’s argument.

Lemma: (M. Catalano-Johnson) Let X ⊆ Pn be a nondegenerate
variety and suppose that

Sect(X) ⊆ V (F ) # Pn .

Then deg F ≥ t + 2.

Proof: (M. Catalisano) Since X is non-degenerate we can choose

Y = {P1, . . . , Pn, Pn+1} ⊆ X

which are linearly independent. Suppose that we can find an F (as
above) for which deg F ≤ t + 1.

Now t < n (otherwise Sect(X) = Pn) and so t + 1 < n + 1.
Consider

Z = {P1, . . . , Pt+1, Pt+2} ⊆ Y .
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Note that Z determines a unique Pt+1 := Pt+1
Z ⊆ Pn.

If Zi = {P1, . . . , P ∗
i , . . . , Pt+2} (i.e. eliminate Pi from Z), then

Zi determines a unique Pt
i 4 Pt ∈ Sect(X). Thus

∪t+2
i=1(P

t
i) = L

is a t-dimensional subvariety of Sect(X) which has degree t + 2.
Since Pt+1

Z ∩ V (F ) has dimension t and contains L, we get that

deg(Pt+1
Z ∩ V (F )) ≥ t + 2 .

Since deg F = t + 1 we have a contradiction (Bezout) unless V (F ) ⊇
Pt+1

Z .
But, in this latter case we can repeat this argument for any set

of n+1 independent points of X. We either get a contradiction or we
obtain that V (F ) ⊇ Sect+1(X). Since we eventually have Secs(X) =
Pn the proof is complete.

There are other “deficient” secant varieties to the Veronese varieties, and I would like
to discuss three more of them.

Example 7.1: The variety Sec8(ν4(P3)) does not fill P34.
This is unexpected since choosing 9 points on the 3-fold ν4(P3) gives a 27-dimensional

choice plus the “connecting” P8 gives an expected 35 dimensional choice. But, this variety
is extremely deficient. In fact, we’ll see that the dimension of Sec8(ν4(P3)) is 33 and
hence is a hypersurface in P34, and so has dimension 2 less than expected. (In the Clebsch
example, the dimension was 1 less than expected.)

Showing that the dimension of Sec8(ν4(P3)) is 33 is equivalent to showing that

H

(
S

℘2
1 ∩ · · · ∩ ℘2

9

, 4
)

= 34 < 35 = dimk S4

where P1, . . . , P9 (with Pi ↔ ℘i) are generically chosen points of P3 and S = k[y0, . . . , y3].
Now, any 9 points of P3 always lie on a quadric hypersurface Q (unique and irreducible

if the points are chosen generically enough). So, there is always a form of degree 4 in
℘2

1 ∩ . . . ∩ ℘2
9 and so

H

(
S

℘2
1 ∩ · · · ∩ ℘2

9

, 4
)
≤ 34 .
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That is enough to prove that Sec8(ν4(P3)) doesn’t fill P34. Proving that this variety is
a hypersurface in P34 or, equivalently, proving that the Hilbert function above has value
exactly 34 in degree 4 (i.e. showing that Q2 is the unique quartic in the ideal ℘2

1∩· · ·∩℘2
9)

is a bit more delicate. Catalisano has a very nice proof of this latter fact which I won’t go
into here.

Once this is established, however, we can use the methods of the last section to form
the 10× 10 matrix

Mt
3,2M3,2 = Z2,2 .

The determinant of this matrix vanishes on the variety Sec8(ν4(P3)) and so (again using
the Catalano-Johnson result) we get that the polynomial det(Z2,2) is the defining equation
of Sec8(ν4(P3)) ⊆ P34.

Note that, in the language of Waring’s Problem, we obtain from this example that:

the generic quarternary quartic is not a sum of 9 fourth powers of linear forms.

This is not one of the classical results that Rota and Ehrenborg refer to in their paper,
but it is mentioned in the article of Terracini (Annali di Matematica Pura ed Applicata,
Serie III, t.24, p.1-10, 1915). I am not sure if Terracini was the first to notice it.

Example 7.2: The variety Sec13(ν4(P4)) does not cover P69.
Note that the choice of 14 points from a 4-fold plus a “connecting” P13 should give a

space of dimension 69. To show that this secant variety is deficient, it is enough to prove
that

H

(
S

℘2
1 ∩ · · · ∩ ℘2

14

, 4
)

= 69 < 70 = dimk S4

where P1, . . . , P14 are 14 general points of P4 and Pi ↔ ℘i ⊆ S = k[y0, . . . , y4].
Now dimk S2 = 15, so there is always a quadric Q through any 14 points of P4 (unique

and irreducible if the points are chosen generally enough.)
Thus Q2 ∈ (℘2

1∩· · ·∩℘2
14)4 and so H( S

℘2
1∩···∩℘2

14
, 4) ≤ 69. As before, this is enough to

prove that Sec13(ν4(P4)) is deficient. I have not been able to find a direct proof that the
value of this Hilbert function is exactly 69, in degree 4, (i.e. that Q2 is the unique quartic
in (℘2

1 ∩ · · · ∩ ℘2
14)4 but I am sure that this is correct. I’d like to have a proof of this

fact.
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Assuming that the Hilbert function in degree 4 is as I asserted, then Sec13(ν4(P4)) is
a hypersurface of P69 and the determinant of the matrix

Mt
4,2M4,2 = Z2,2

(this time of size 15 × 15) gives the defining equation (again, thanks to the Catalano-
Johnson result.)

Note that, in the language of Waring’s Problem, this result says (even without the
precise value of the Hilbert function above) that:

the generic quinary quartic is not the sum of 14 fourth powers of linear forms.

(Again, Ehrenborg and Rota don’t mention this example - which is in Terracini’s article
cited above. I don’t know when it was first noticed.)

Example 7.3: The variety Sec6(ν3(P4)) ⊆ P34 does not fill P34.
The expected dimension of this secant variety is 7 ·4+6 = 34, but for 7 general points

P1, . . . , P7 in P4 (Pi ↔ ℘i ⊆ S = k[y0, . . . , y4])

H

(
S

℘2
1 ∩ · · · ∩ ℘2

7

, 3
)

= 34 < 35 = dimk S3

(which is enough to prove the result.)
Now e(℘2

i ) = 5 and so if I = ℘2
1 ∩ · · · ∩ ℘2

7 then e(I) = 35. Recall that 7 points of P4

are always on a rational normal curve in P4, so, using Theorem 6.2 above, we find that

H(S/I, j) < 35 for j < max{ 3, [(2 + 14)/4] } = 4 .

Hence H(S/I, 3) ≤ 34. The proof that the value of the Hilbert function is exactly 34 is,
again, a bit delicate, but Catalisano has a proof for this case also.

It follows that Sec6(ν3(P4)) is a hypersurface of P34.

Remark: Unfortunately, the Clebsch method does not work to give the equation of this
variety and, at this point, I have no idea what the defining equation is (except, that from
the Catalano-Johnson result, it must have degree ≥ 8.)
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In fact, I don’t even know the degree of this variety (nor do I know a synthetic way to
find the degrees of the varieties Sect(νj(Pn)) in general). It is hard to believe that these
degrees are not known, but that seems to be the case.

The reason that I have spent so much time on these exceptions is that, thanks to
the following wonderful theorem of J.Alexander and A.Hirschowitz, these are the only
exceptions. Thus we have a complete answer to the Big Waring Problem for Homogeneous
Forms.

Theorem 7.4: (J. Alexander, A. Hirschowitz) Let X = {P1, . . . , Ps} be a general set of s

points in Pn. Let Pi ↔ ℘i ⊆ k[y0, . . . , yn] = S and let j ≥ 3.
Then

H

(
S

℘2
1 ∩ . . . ∩ ℘2

s

, j

)
= min{ (n + 1)s, dimk Sj}

except for
a) n = 2, j = 4, s = 5 (Proposition 6.4)
b) n = 3, j = 4, s = 9 (Example 7.1)
c) n = 4, j = 4, s = 14 (Example 7.2)
d) n = 4, j = 3, s = 7 (Example 7.3) .

Translating this into the language of Secant Varieties to the Veronese Varieties we get:

Corollary 7.5: (see Iarrobino’s paper: Inverse Systems of a Symbolic Power II)
Let X = Sect(νj(Pn)) (j ≥ 3). Then

the dimension of X = min{(t + 1)n + t ,

(
n + j

j

)
− 1}

except for
a) j = 3, n = 4, t + 1 = 7 (Example 7.3), (deficienty 1);
b) j = 4, n = 2, t + 1 = 5 (Proposition 6.4), (deficiency 1);
c) j = 4, n = 3, t + 1 = 9 (Example 7.1), (deficiency 1);
d) j = 4, n = 4, t + 1 = 14 (Example 7.2), (deficiency 1).

Remark: The proof of this theorem is spread over severl papers and a hundred journal
pages. It would be wonderful to have a more direct proof of this important theorem.
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(See the relatively elementary proof of M. Catalano-Johnson, in this volume, for the case
n = 2.)

To finish off this circle of ideas concerning the Waring Problems for Homogeneous
Forms, I want to make some small comments on the “Little Waring Problem” (i.e. what
is the least integer g(j) for which EVERY form in k[y0, . . . , yn] of degree j is a sum of
≤ g(j) jth powers of linear forms?) I said earlier in these notes that I didn’t know any
case, apart from the case where j = 2 (any n), where this problem was solved. I have since
found a bit more information in the book of J.Harris (Algebraic Geometry Exc.11.35). The
exercise considers the case n = 1, i.e. homogeneous forms in k[y0, y1].

Sylvester’s Theorem (Lecture 6, just before 6.2) gave us the answer to the “generic”
problem. Recall that that theorem says that a general form of degree n is the sum of d nth

powers of linear forms if and only if 2d− 1 ≥ n. Harris adds: “... moreover, if 2d− 1 = n

it is uniquely so expressible.”, i.e. roughly (n + 1)/2 nth powers are needed, generically.
Since the rational normal curve, C ⊂ Pn, has degree n and through every point of Pn

we can find a hyperplane which meets C in n distinct points, we obtain that every form
of degree n in k[y0, y1] is the sum of ≤ n nth powers of linear forms. Moreover, it is not
hard to show (and this is the exercise in Harris’ book) that if P is a point of Pn that is on
a tangent line to C then P requires n nth powers in its expresssion as a sum of powers of
linear forms. So, the “little” Waring Problem for k[y0, y1] is completely solved.

Let me state the result formally.

Theorem 7.6: Let S = k[y0, y1] and let F ∈ Sn. Then F can be written as a sum of
n nth powers of linear forms.

Moreover, F = yn−1
0 y1 cannot be written as the sum of fewer than n nth powers of

linear forms.

More generally, if we consider νj(Pn) ⊆ PN (N =
(j+n

j

)
− 1) and P any point of PN

off νj(Pn), then a general PN−n = Ps through P meets νj(Pn) in deg(νj(Pn)) = jn distinct
points. By the Uniform Position Lemma of Harris, every s + 1 subset of these jn points is
linearly independent. Thus the form of degree j in k[x0, . . . , xn] which corresponds to P

can be written as a sum of s + 1 = N − n + 1 jth powers of linear forms (in
( jn

s+1

)
-ways,

using just this Ps).
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Notice also, that since we can choose infinitely many different Ps’s through P , there are
infinitely many such representations. This is in marked contrast to the case when a form
of degree j can be expressed as a sum of

(n+j
j

)
− n− 1 jth powers of linear forms. In that

case (generically) the representation is unique (as has been shown by Iarrobino and Kanev
in their paper “The Length of a homogeneous form, Determinantal Loci of Catalecticants
and Gorenstein Algebras” - henceforth called their “Length” paper!) (Thanks, by the way,
to Iarrobino for an interesting exchange on this Bertini argument and for his clearing up
an obscurity (!) in my original remarks to him.)

One wonders how good this bound is! The first place to try it out is for cubic forms
in S = k[x0, x1, x2]. Using Cor. 7.5 (with j = 3, n = 2) we find that generically a cubic
form in S is a sum of 5 cubes of linear forms and, by the remarks above, every cubic form
in S is a sum of ≤

(
2+3
3

)
− 2 = 8 cubes of linear forms.

However Bruce Reznick, in his preprint “Sums of Powers of Complex Linear Forms”
(Thm. 7.6)), says that F = x0(x0x1 − x2

2) is the only cubic in C[x0, x1, x2] requiring 5
cubes of linear forms i.e. all others require 4 or less!

Clearly there is much more to be said about this problem (understatement!!!).

Beyond Waring!

As I mentioned early on in this discussion, the attempt to express homogeneous forms
as a sum of powers of linear forms was an attempt to simplify (and organize) the forms of
a given degree. The theorem on the polarization of quadratic forms (or the diagonalization
of symmetric matrices) - a complete and beautiful theorem in itself - no doubt contributed
to the attempt at expressing forms as sums of powers of linear forms. Perhaps we hu-
man beings are especially attracted to “powers” (Fermat’s and Catalan’s problems being
two examples that come immediately to mind as ones that have attracted many people’s
interest).

Nevertheless, there were many other attempts at canonical forms attempted, and
Ehrenborg and Rota, in their previously cited paper, mention several of these (as does
Bronowski in his series of papers in the 1930’s on “Canonical expressions ... ”).

I’m just going to look at one of these other results now as I want to move on to the
fascinating work of Iarrobino and Kanev on Catalecticants and Gorenstein (artinian) rings
and explain the connection with what has gone on above.
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For example, Ehrenborg and Rota mention:

Proposition 7.7: The general ternary quartic can be written

h1h2 + h2
3 where the hi are quadratic forms.

(i.e. If S = k[y0, y1, y2], then the general element of S4 can be so written.)

Proof: We start by considering the map

Φ : S2 × S2 × S2 −→ S4

described by
Φ(h1, h2, h3) = h1h2 + h2

3

Following our earlier example we want to find the maximum rank of the differential
of this map. We consider the line through (h1, h2, h3) parametrized by

(h1, h2, h3) + t(Q1, Q2, Q3)

whose image under Φ is: (h1 + tQ1)(h2 + tQ2) + (h3 + tQ3)2.
The derivative of Φ along this line is

(h1 + tQ1)Q2 + (h2 + tQ2)Q1 + 2(h3 + tQ3)Q3

which, when t = 0 gives
h1Q2 + h2Q1 + 2h3Q3

i.e. as we vary Q1, Q2, Q3 we obtain tangent vectors in the vector space which is the degree
4 part of the ideal (h1, h2, h3).

Thus, we want to know the size of this vector space for general h1, h2, h3. There are
several ways to do this:

a) Three general quadrics form a regular sequence in S, so the Hilbert function of
the ideal they generate is:

1 3 3 1 0 · · ·

Thus, three general quadrics generate the space of all the fourth degree forms in S and we
are done.

62



b) If we let h1 = L2
1, h2 = L2

2, h3 = L2
3 ( where L1, L2 and L3 are linearly independent

linear forms) , then (L2
1, L

2
2, L

2
3)4 =< L2

1S2, L2
2S2, L2

3S2 > and we saw in Theorem 3.2, this
vector space is (I−1)4 where I = ℘3

1 ∩ ℘3
2 ∩ ℘3

3. So, it would be enough to prove that

H

(
S

℘3
1 ∩ ℘3

2 ∩ ℘3
3

, 4
)

= 15 = dimk S4

and that is easy since there is no plane quartic with 3 (non-colinear) triple points (by
Bezout).
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Lecture 8:... and now for something completely different?

In this, and in the suceeding sections, I will be using (extensively) several preprints:
one by Iarrobino and Kanev that I referred to earlier as “Length”; one by Susan J. Diesel -
Irreducibility and Dimension Theorems for Families of Height 3 Gorenstein Algebras; and
one by Iarrobino - Inverse system of a symbolic power, II: the Waring problem for forms
(revised form of 11/93).

I will not always give references for specific facts that I use from these works, but most
of what I say can be deduced from what is in those papers (with the notable exception of
the material on divided power rings). I want to make very clear my debt to these authors
and especially to Tony Iarrobino for his generosity in giving me an advance look at his
work and for responding to my many queries on the contents of these papers.

Recall our original notation:

R = k[x0, . . . , xn] S = k[y0, . . . , yn]

where the elements of R are considered as partial differential operators acting on the
elements of S. Unless we specifically state otherwise, all ideals will be homogeneous and
all modules graded.

Recall also that if I is a homogeneous ideal of R then the graded R-submodule of S

annihilated by I is denoted I−1 and called the inverse system of I.

Definition 8.1: The ring R/I is an artinian ring if and only if dimk R/I < ∞ if and only
if Ij = Rj for all j >> 0. (⇔ I ⊇ (x0, . . . , xn)t for some t.)

Notation: We let m denote the (irrelevant) unique homogeneous maximal ideal of R, i.e.
m = (x0, . . . , xn). If no confusion can occur, we also let m denote the image of (x0, . . . , xn)
in any (homogeneous) quotient, A of R.

Definition 8.2: The socle of the ring A, denoted Soc(A)) is:

Soc(A) := (0 : m) = {g ∈ A | gm = 0} .

(Note: Since m is homogeneous, Soc(A) is a homogeneous ideal of A.)
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Examples 8.3:
1). Let A = k[x0, x1]/(x2

0, x
2
1), then

A = k ⊕ (kx0 ⊕ kx1) ⊕ (kx0x1) .

Clearly x0x1 ∈ Soc(A) and, in fact, Soc(A) = (x0x1).

2). Let A = k[x0, x1]/(x3
0, x0x1, x2

1), then

A = k ⊕ (kx0 ⊕ kx1)⊕ kx0
2 .

Then x1 and x0
2 are in Soc(A). In fact, Soc(A) = (x0

2, x1).

Remarks:
1). If A = k[x0, . . . , xn]/I = ⊕Ai and F ∈ At, then

F ∈ Soc(A) ⇔ Fxi = 0 for i = 0, . . . , n .

2). Let A be an artinian ring as above, and write

A = k ⊕A1 ⊕ . . .⊕A# (A# *= 0) .

Then we always have A# ⊆ Soc(A).

Definition 8.4: Let

A = k[x0, . . . , xn]/I = k ⊕A1 ⊕ . . .⊕A# with A# *= 0 .

Then ' is called the socle degree of A.
Note that the socle degree of A is the least integer ' for which m#+1 ⊆ I.

Definition 8.5: The graded artinian ring A is called a Gorenstein ring if dimk Soc(A) = 1.

Thus, if A is an artinian ring having socle degree ' then A is Gorenstein if and only
if Soc(A) = A# and dimA# = 1.

Remark: In Example 8.3 above, 1) is a Gorenstein ring and 2) is not. Notice that these
two rings have the same Hilbert function.
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Proposition 8.6 The Hilbert function of an artinian Gorenstein ring A is symmetric.
More precisely, if ' is the socle degree of A then

H(A, t) = H(A, ' − t) for all t .

Proof: The result follows immediately from the following
Claim: The pairing

At ×A#−t −→ A# 4 k

(induced by the multiplication of A) is a perfect pairing.
(Hence At 4 A∗

#−t (∗ = vector space dual) and hence both have
the same dimension.)
Proof of claim: We need to show that if a ∈ At and ab = 0 for all
b ∈ A#−t then a = 0.

Now A#−t is generated by the monomials xβ where degβ = '− t

and, by assumption, axβ = 0 for all such β.
Moreover, axβ′

= 0 for all β′ where deg β′ = '− t− 1. This is so
because

(axβ′
)xi = 0 for all i = 0, . . . , n .

Thus axβ′ ∈ Soc(A). But, deg axβ′
= t + (' − t − 1) = ' − 1, so this

cannot be a non-zero element of Soc(A).
Hence axβ′

= 0 for all β′ of deg = '− t−1. We can thus continue
this process until we obtain that axi = 0 for all i = 0, . . . , n. Thus,
a ∈ Soc(A). But deg a = t *= ' and so a = 0 and we are done. 67

Remark: In fact, if A is an artinian ring, with socle degree ' and dimk A# = 1 then

A is a Gorenstein ring ⇔ the pairing At ×A#−t → A#

is a perfect pairing for every 0 ≤ t ≤ ' .

To see why this is so just note that the Claim in the Proposition above gives half of the
result, while if there was a non-zero socle element in degree t (for t < ') then it would
annihilate everything in A#−t contradicting the fact that the pairing is perfect.
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This characterization of Gorenstein rings is only one of many interesting such char-
acterizations. The characterization I will spend the most time discussing, however, comes
from a consideration of the action of R on S as above.

We’ve seen that if I ⊆ R then R/I is artinian iff I−1 is a finitely generated R-
submodule of S. The (graded) Gorenstein (artinian) rings fit very nicely into this equiva-
lence.

Theorem 8.7: (Macaulay) Let R = k[x0, . . . , xn] and let A = R/I (I homogeneous) be
artinian.

A is a Gorenstein ring with socle degree j ⇔ I−1 is a principal submodule of S

generated by a form of degree j.

I.e. R/I is Gorenstein ⇔ I = ann(F ), F ∈ Sj.

Remark: For those “in the know”, the Cohen-Macaulay type of the graded artinian ring
A = R/I is the same as the (minimal) number of generators of the R-submodule I−1. I
won’t enter into that here.

In order to prove Macaulay’s theorem I will follow a route proposed by Iarrobino. To
understand that approach it is useful to introduce a concept which was first baptized by
Iarrobino – the notion of the ancestor ideal.

If R = k[x0, . . . , xn] and V ⊆ Rj is a subspace then

Rj−i ⊇ V : Ri := {G ∈ Rj−i | GRi ⊆ V }

is a vector subspace of Rj−i.

Definition-Proposition 8.8: With the notation above, the set

V =
[ 1∑

i=j

V : Ri

]
⊕ (V )

is a homogeneous ideal of R called the ancestor ideal of V .
It is the largest ideal J of R for which Jj+t = (V )j+t for all t ≥ 0.
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Proof: We have:

V =< V : Rj > ⊕ < V : Rj−1 > ⊕ · · ·⊕ < V : R1 > ⊕V ⊕R1V ⊕ · · ·

and clearly V is closed under addition. Also, multiplying anything in V of degree ≥ j by
anything in R clearly is back again in V . So, the only multiplication to consider is when

G ∈ Rt (t ∈ N) and H ∈ < V : Ri > , 1 ≤ i ≤ j (so deg H = j − i) .

In that case, write deg GH = t + j − i = s.

Case 1: t ≥ i.
Then G ∈ Rt ⇒ G =

∑
α FαGα where deg Gα = i and deg Fα = t− i.

But then
GH = (

∑

α

FαGα)H =
∑

α

Fα(GαH) .

Since H ∈ < V : Ri > and Gα ∈ Ri we get that GαH ∈ V and so Fα(GαH) ∈ (V ).
Thus, GH ∈ (V ) and we are done.

Case 2: t < i.
Then deg GH = t + (j − i) = (t − i) + j < j i.e GH ∈ Rt+j−i and we need to show

that
GH ∈< V : Rj−(t+j−i) >=< V : Ri−t > .

But (GH)Ri−t = H(GRi−t) and since we always have GRi−t ⊆ Ri, in order to show that
GH ∈< V : Ri−t > it will suffice to show that HRi ⊆ V . But, this is exactly how H was
chosen.

To finish off the proof we want to show why V is the biggest homogeneous ideal J of
R for which Jj+t = (V )j+t for all t ≥ 0.

So, suppose that J ⊇ V and that Ji ⊃ V i for some i < j. Then there is an element
G ∈ Ji such that G /∈< V : Rj−i >. I.e. there is an H ∈ Rj−i such that GH /∈ V . But,
H ∈ Rj−i and G ∈ Ji implies that HG ∈ Jj = V , and that is the contradiction which
establishes the result.

Note: Recall that the saturation of a homogeneous ideal is the largest ideal which agrees
with the given ideal in all sufficiently high degrees.

68



Thus, if V ⊆ Rj then (V ) ⊆ V ⊆ (V )sat. All of these containments can be proper, as
the following example shows:

Example 8.9: Let V =< x4
1, x1x3

2, x
3
1x2 >⊆ R4, where R = k[x1, x2].

Then R1V =< x5
1, x

4
1x2, x3

1x
2
2, x

2
1x

3
2, x1x4

2 >= (x1)5 and thus, (V )sat = (x1).

On the other hand, V : R1 =< x3
1 > and V : R2 = (0), so

V =< x3
1 > ⊕V ⊕R1V ⊕ · · ·

Thus,
(V ) $ V $ (V )sat ,

and all three ideals agree in high enough degrees.

Early in these lectures we saw the following: Let

R = k[x0, . . . , xn] S = k[y0, . . . , yn]

and let I ⊆ R an ideal. Then it is easy to describe I−1 using the following important fact
(see Proposition 2.5):

(I−1)j = I⊥
j

(where the ⊥ is with respect to the pairing

Rj × Sj −→ k ).

So, in particular, if I is an artinian ideal then I−1 is finitely generated and easily
constructed.

But, how do we go in the other direction? Specifically: if we let F ∈ Sj and let
I = ann(F ), I ⊆ R, how do we go about constructing I?

Clearly, since F ∈ Sj , we can use the pairing

Rj × Sj −→ k

to find that Ij has codimension 1 in Rj and it is < F >⊥. Also, clearly, Ij−t = (RtF )⊥.
But, that is not a particularly useful description of I. The following proposition gives us
a useful way to describe I = ann(F ).
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Proposition 8.10: If F ∈ Sj and I = ann(F ), then

a) Ij =< F >⊥ (in the pairing Rj × Sj −→ k.)

b) I = < F >⊥ + mj+1.

Proof: a) is obvious from our remarks above.

b) We’ll first show that
I ! < F >⊥ + mj+1 .

Now, mj+1 certainly annihilates F ∈ Sj and also < F >⊥= Ij as we have already
remarked on above. So, we only need to prove the containment in degrees < j.

So, let G ∈ < F >⊥ where degG = t < j. By the definition of the ancestor ideal
< F >⊥ we must then have GRj−t ∈< F >⊥, i.e. Gxα ∈< F >⊥ for any monomial xα of
degree j − t.

We want to show that G ◦ F = 0. But, by the definition of the action, G ◦ F ∈ Sj−t

and (see the beginning of Section 2) we have

xα ◦ (G ◦ F ) = (xαG) ◦ F .

But, xαG ∈ Ij =< F >⊥ and so (xαG) ◦ F = 0. Thus, xα ◦ (G ◦ F ) = 0 for every
monomial xα ∈ Rj−t. Since the pairing Rj−t × Sj−t −→ k is nondegenerate, this implies
that G ◦ F = 0, as was to be shown.

As for the other inclusion, i.e.

I ⊆ < F >⊥ + mj+1 .

there is no question about this inclusion in degrees ≥ j. So, let G ∈ I, deg G = t < j and
let H ∈ Rj−t.

Since I is an ideal, GH ∈< F >⊥, i.e. GRj−t ⊆< F >⊥ i.e. G ∈ < F >⊥, as we
wanted to show. 67

There is one more proposition we shall need to prove Macaulay’s theorem.

Proposition 8.11: Let A = R/I be an artinian graded ring with socle degree j and for
which dimk Aj = 1.
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Then
A is a Gorenstein ring ⇔ I = Ij + mj+1 .

Proof: :⇒
We first prove the easy inclusion I ⊆ Ij + mj+1.
Since the socle degree of R/I is j, we certainly have I# = (mj+1)# for any ' ≥ j + 1.

Also, the ideals I and Ij + mj+1 certainly agree in degree j.
In degree t < j, let H ∈ It. Then, since I is an ideal, HRj−t ⊆ Ij and hence, by

definition, H ∈ (Ij)t. Thus, this inclusion is obvious.
We now consider the other inclusion, i.e. Ij + mj+1 ⊆ I.
Again, since R/I has socle degree j, mj+1 ⊆ I. Also, both Ij + mj+1 and I agree in

degree j. So, it is enough to show that (Ij)t ⊆ It in all degrees t < j.
To see this, recall (see the Claim in Proposition 8.6) that the pairing

At ×Aj−t −→ Aj 4 k

is a perfect pairing.
Regard this pairing as

Rt/It ×Rj−t/Ij−t −→ Rj/Ij

and choose G ∈ (Ij)t. Then GRj−t ⊆ Ij . I.e. in the pairing Gxβ = 0 for every β, where
deg β = j − t.

By the perfectness of the pairing we then get that G = 0, i.e. G ∈ It, which is what
we wanted to show.

⇐:
Let’s suppose that I = Ij + mj+1. We want to show that A = R/I is Gorenstein. In

view of the remark after Prop. 8.6, it will be enough to show that the pairings

Rt/It ×Rj−t/Ij−t −→ Rj/Ij

are all perfect.
So, let G ∈ (R/I)t and suppose that Gxβ = 0 for every β with deg β = j − t. But

then, GRj−t ⊆ Ij and this implies that G ∈ (Ij)t. Since I = Ij +mj+1 we get that G ∈ It

i.e. G = 0 and we are done.
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We are now ready to prove Macaulay’s Theorem.

Proof: (Theorem 8.7)
So, suppose that A = R/I and I = ann(F ), F ∈ Sj. Then, since the apolarity pairing

Rj × Sj −→ k

is perfect and F ∈ Sj, we have Ij =< F >⊥ and so dimk(Rj/Ij) = 1.
Also, since deg F = j we must have mj+1 ⊆ I. Thus, A is an artinian ring of socle

degree j for which dimk Aj = 1. We can now apply Proposition 8.11 and so we get that A

is Gorenstein ⇔ I = Ij + mj+1.
But, we just saw that Ij =< F >⊥ and by Proposition 8.10 I = < F >⊥ + mj+1 and

so we are done.
Conversely, suppose that A is a Gorenstein ring with socle degree j. By Proposition

8.11 we have I = Ij + mj+1. But, since A is Gorenstein, dimk(Rj/Ij) = 1. Thus, there
must be an F ∈ Sj such that Ij =< F >⊥. It remains to show that I = ann(F )

Let J = ann(F ). Then Jj = Ij by construction. But, by Proposition 8.10, the ideal
ann(F ) is completely determined by its degree j piece and so is Jj +mj+1. But then I = J

and we are done. 67
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Lecture 9: Parameter Spaces for Gorenstein Artinian Ideals

From Macaulay’s Theorem (Theorem 8.7) we saw : if R = k[x0, . . . , xn] and A = R/I

is a Gorenstein ring with socle degree of A = j, then I = ann(F ) where F ∈ Sj (S =
k[y0, . . . , yn]). Obviously,

ann(F ) = ann(λF ) for any F ∈ Sj , λ *= 0 , λ ∈ k .

With this theorem (and observation) in hand we immediately obtain the following:

The projective space P(Sj) 4 PN (where N =
(
j+n

n

)
−1) is a parameter

space for all the Gorenstein (artinian) quotients of R = k[x0, . . . , xn].

This parameter space gives us a natural place in which to view, geometrically, the
family of all (artinian) Gorenstein quotients of R = k[x0, . . . , xn] having socle degree j, as
well as certain specific subfamilies of such rings. In particular, it will be natural to think
of the geometric properties of families of such Gorenstein rings with specified invariants
(Hilbert function, graded Betti numbers for example).

Since I will be interested in the Hilbert function (first) of such Gorenstein rings, I
want to explain quickly how one goes about calculating the Hilbert function of A = R/I

when I = ann(F ), F ∈ Sj.
First observe that the R-submodule of S generated by F (which we shall denote (F ))

is:
k ⊕Rj−1F ⊕ · · · ⊕R1F⊕ < F > ,

i.e.

(F )t =

{Rj−tF for t ≤ j;

0 for t > j.
Moreover, since I = ann(F ) we have:

dimk It =






dimk(Rj−tF )⊥ for t ≤ j ;

dimk Rt for t > j .

i.e.

dimk(Rt/It) =






dimk(Rj−tF ) for t ≤ j ;

0 for t > j .
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So, we have proved the following Proposition:

Proposition 9.1: If R = k[x0, . . . , xn] and I ⊆ R, I = ann(F ) where F ∈ Sj (S =
k[y0, . . . , yn]) and if we set A = R/I, then

H(A, t) = dimk(Rj−tF ) = dimk <

(
∂

∂yB

)
F | deg B = j − t > .

(Perhaps the only thing remaining to comment on in this proposition is the last equality.
But, that is nothing more than a restatement of how the ring R acts on the ring S.)

Before I go on to work out some examples, I would like to have another way to look
at the action of R = k[x1, . . . , xn] on S = k[y1, . . . , yn] when the characteristic of k is 0.

We already saw that if α = (α1, . . . , αn) then, in the pairing,

Rj × Sj −→ k

we have
xα × yα −→ α1!α2! . . . αn!

which is not, in general, 1. I.e. the basis “vectors” xα and yα are not dual bases. I would
like to get around this situation so that certain calculations can be made simpler.

We first introduce some notation: if α = (α1, . . . , αn) and β = (β1, . . . , βn), where
αi , βi ∈ Z≥0, then we write:

α! :=
n∏

i=1

αi! and
(
α + β

α

)
:=

n∏

i=1

(
αi + βi

αi

)
.

It is a simple exercise to show that:
(
α + β

α

)
=

(α + β)!
α!β!

=
(
α + β

β

)
.

We proceed somewhat formally: We start with R = k[x1, . . . , xn] = ⊕∞
i=oRi, which

we think of as a (graded) infinite dimensional vector space over k. We form the (graded)
dual vector space, which we call D:

D = k ⊕D1 ⊕D2 ⊕ · · ·
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where Di is the vector space dual to Ri.
If we let {xα} be the set consisting of the standard monomial basis of Rj then we

write {Y (α)} for the set which consists of the dual basis. I.e. Y (α) is the linear functional
on Rj which takes xα to 1 and all other basis vectors of Rj to 0.

If we write e1 = (1, 0, . . . , 0), · · · , en = (0, 0, · · · , 1) then we shall denote this “dual”
(infinite dimensional) vector space by

D = k{Y (e1), . . . , Y (en)} .

So, as a graded vector space, D has as basis {Y (α) | α ∈ Zn
≥0}. I would like to put a

ring structure on D.

We define:
(aY (α))(bY (β)) = ab

(
α + β

α

)
Y (α+β)

and extend this linearly to all of D.
It is easy to see that the only thing we need to check to see if this makes D into a

commutative ring with 1, is:

Claim: Y (α)(Y (β)Y (γ)) = (Y (α)Y (β))Y (γ) .

Proof: It is easy to see that verifying the claim amounts to show-
ing that

(
α + β + γ

α

)(
β + γ

β

)
=
(
α + β

α

)(
α + β + γ

α + β

)
.

But, both of these are easily seen to be

(α + β + γ)!
α!β!γ!

Remark 9.2: a) I’ll leave, as a simple induction exercise, that

Y (α1)Y (α2) · · · Y (αs) =
(α1 + · · · + αs)!

α1! · · ·αs!
Y (α1+···+αs)

in particular

(Y (α))d =
(dα)!
(α!)d

Y (dα) and if α = (ei) then (Y (ei))d = d!Y (dei) .
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It follows that if α = (α1, . . . , αn) and we let

Y α = (Y (e1))α1 · · · (Y (en))αn

then
Y α = α!Y (α) .

b) The ring D, as constructed above, is sometimes referred to as the ring of divided powers
or divided power ring. The notation I am using, D = k{Y (e1), · · · , Y (en)} is completely
nonstandard! I will explain what the “divided powers” are later.

c) The multiplication I’ve defined above arises very naturally as the dual to the comulti-
plication on R given by the diagonal map

∆ : R −→ R⊗k R

where ∆ is the unique map out of the polynomial ring R which takes 1 to 1⊗k 1 and xi to
xi ⊗ 1 + 1⊗ xi. It would take me too far afield to go into the details about this right now.

d) The reader should notice that the coefficients of the multiplication are in Z and so make
sense in a ring of any characteristic. I.e. the divided power ring can be defined with k any
base ring.

Example 9.3:
1) Let’s consider the case of one variable in characteristic 0. So, D = k{Y (e1)} is the vector
space dual to R = k[x1]. We have

D = k⊕ < Y ((1)) > ⊕ < Y ((2)) > ⊕ · · ·

Now
Y ((1))Y ((1)) =

(
(1) + (1)

(1)

)
Y ((2)) = 2Y ((2))

and, more generally
(Y ((1)))d = d!Y ((d)) .

Since, in characteristic 0, d! is never 0, we see that, as an algebra, D is generated by Y ((1)).

2) Let’s consider the same ring, but this time let k have characteristic 2.
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As before,
D = k⊕ < Y ((1)) > ⊕ < Y ((2)) > ⊕ · · ·

But now, Y ((1))Y ((1)) = (Y ((1)))2 = 0 and so (Y ((1)))d = 0 for all d ≥ 2.
But, Y ((2))Y ((1)) =

((2)+(1)
(2)

)
Y ((3)). Since

(
(2) + (1)

(2)

)
=
(

3
2

)
= 3 ≡ 1(mod 2)

we have
Y ((2))Y ((1)) = Y ((3)) .

It seems fairly clear that a knowledge of the multiplication in this ring is heavily
dependent on the divisibility of the binomial coefficients by various primes (in our case the
prime 2).

The most useful result that I know of in this direction is a theorem of Lucas.

Theorem 9.4: Let a =
∑∞

i=0 aipi, b =
∑∞

i=0 bipi (where 0 ≤ ai, bi < p) (i.e. the base p

expansions of a and b respectively.)
Then (

b

a

)
≡

∞∏

i=0

(
bi

ai

)
(mod p) .

Note: Since both ai, bi are < p the only way that
(bi

ai

)
≡ 0(mod p) is if

(bi

ai

)
= 0, i.e.

bi < ai.
If you want to play with this a bit, consider the following examples:
in char = 2: 12 = 4 + 8 (is the base 2 expansion of 12) and

Y ((12)) = Y ((4))Y ((8)) .

in char = 3: 15 = 2(3) + 1(9) is the base 3 expansion of 15.

(Y ((3)))2Y ((9)) = cY ((15))

where c *= 0 modulo 3. (There is a pattern here which the reader might try to unravel.)

From foolings around like this, one can eventually show that, in characteristic p, the
ring k{Y (e1)} is (infinitely) generated by the elements {Y ((pe))} for all the prime powers
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pe. Thus, this nice ring, with the same Hilbert function as the polynomial ring in one
variable, is not a noetherian ring.

For us, since we will usually work with characteristic 0, the most important result
about the ring D is the following:

Theorem 9.5: Let k be a field of characteristic 0. As above, we let R = k[x1, . . . , xn],
S = k[y1, . . . , yn] and D = k{Y (e1), . . . , Y (en)}.

Let φ : S −→ D be the k-algebra homomorphism given by letting φ be the identity
on k and φ(yi) = Y (ei).

Then φ is an isomorphism of k-algebras.
Moreover, if

Ri × Sj → Sj−i

is the differentiation action of R on S and

Ri ×Dj → Dj−i

is the contraction operation given by:

xα × Y (β) →






0 if α ! β

Y (β−α) if α < β

then the following diagram commutes

Ri × Sj −→ Sj−i

id. ↓ ↓ φj ↓ φj−i

Ri × Dj −→ Dj−i

i.e. S and D are also isomorphic as R-modules.

Proof: Since S is a polynomial algebra there is an algebra homomorphism as defined in
the statement of the theorem.

Be careful, however! We have that φ(yi) = Y (ei) but (for example)

φ(y2
i ) = (Y (ei))2 = 2Y (2ei) = 2Y ((2,0,...,0)) .
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Observe also that if yα ∈ Sj , where α = (α1, . . . , αn), then

φ(yα) = φ(yα1
1 · · · yαn

n ) = φ(y1)α1 · · · φ(yn)αn

= (Y (e1))α1 · · · (Y (en))αn = Y α = α!Y (α) .

Now, in characteristic 0, α! *= 0 and since the Y (α) are a basis for the vector space Dj

we see that φ is 1-1 and onto, i.e. φ is an isomorphism of rings.
Finally let’s see what happens with the various bilinear mappings:
if xα ∈ Ri and yβ ∈ Sj then, if α ≤ β,

xα × yβ −→ β!
(β − α)!

yβ−α

while
xα × φ(yβ) = xα × (β!Y (β)) −→ β!Y (β−α) .

Now notice that
φ

(
β!

(β − α)!
yβ−α

)
=

β!
(β − α)!

φ(yβ−α)

=
β!

(β − α)!
(β − α)!Y (β−α) = β!Y (β−α) .

and that completes the argument.

Remarks 9.6:
1) The inverse isomorphism φ−1 : D → S (of course, in characteristic 0) is given by

Y (α) −→ yα

α!

2) If L = a1y1 + · · ·+anyn is in S1, then I would like to record what φ(Ld) looks like in D.
Now,

φ(Ld) = (φ(L))d = (a1Y
(e1) + · · · + anY (en))d

=
∑

(α1,...,αn),
∑

αi=d

aα1
1 · · · aαn

n

(
d

α1 α2 · · ·αn

)
(Y (e1))α1 · · · (Y (en))αn

=
∑

aα1
1 · · · aαn

n
d!

α1! · · ·αn!
(α1!Y (α1e1)) · · · (αn!Y (αnen))
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= d!
∑

(α1,...,αn),
∑

αi=d

aα1
1 · · · aαn

n Y ((α1,...,αn)) .

Example 9.7: Let F = Y ((2,2,2)) in D6. Then

R1F =< Y ((1,2,2)), Y ((2,1,2)), Y ((2,2,1)) > so dimk R1F = 3;

R2F =< Y ((0,2,2)), Y ((1,1,2)), Y ((1,2,1)), Y ((2,0,2)), Y ((2,1,1)), Y ((2,2,0)) > so dimk R2F = 6;

R3F =< Y ((0,1,2)), Y ((0,2,1)), Y ((1,0,2)), Y ((1,1,1)), Y ((1,2,0)), Y ((2,0,1)), Y ((2,1,0)) >

so dimk R3F = 7.
We can now use the symmetry of the Hilbert function of a Gorenstein ring to assert

that dimk R4F = 6 ; dimk R5F = 3 ; dimk R6F = 1 . So, if I = ann(F ) where I ⊆
k[x0, x1, x2] = R then

H(R/I,−) = 1 3 6 7 6 3 1 0 · · ·

I now want to explain why the ring D is called the ring of divided powers.
Let R be a non-negatively graded R0-algebra,

R = R0 ⊕R1 ⊕ · · · .

Definition 9.8: A system of divided powers on R is a family of functions

−[i] : ∪j>0Rj → ∪j>0Rj for i = 0, 1, . . .

such that the following rules are satisfied:
1) The function −[0] is the constant function 1, and the function −[1]

is the identity function. Moreover, deg F [d] = ddeg F .

2) F [d]F [e] =
(d+e

d

)
F [d+e] ;

3) (F [d])[e] = (de)!
e!(d!)e F [de] ;

4) (FG)[d] = d!F [d]G[d] = F dG[d] = F [d]Gd ;

5) (αF )[d] = αdF [d] for α ∈ R0 ;
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6) (F + G)[d] =
∑d

e=0 F [e]G[d−e] .

Proposition 9.9: If k = R0 is a field of characteristic 0 then the functions

F [d] =
F d

d!

is a system of divided powers on R.
Proof: The condition 1) is obvious. As for 2), just note that

F d

d!
F e

e!
=

(d + e)!
d!e!

(
1

(d + e)!
F d+e

)
.

As for 3), note that

(F [d])[e] =
1
e!

(F [d])e =
1
e!

(
F d

d!

)e

=
1
e!

1
(d!)e

F de

=
1
e!

1
(d!)e

(de)!
(

1
(de)!

F de

)
=

1
e!

1
(d!)e

F [de] .

For 4) we have:

(FG)[d] =
1
d!

(FG)d =
F d

d!
Gd = F [d]Gd =

Gd

d!
F d = G[d]F d .

For 5) we have:

(αF )[d] =
1
d!

(αF )d = αd F d

d!
= αdF [d] .

For the “hoped for” binomial theorem, we have:

(F + G)[d] =
1
d!

(F + G)d =
1
d!

(
d∑

e=0

(
d

e

)
F eGd−e

)

=
1
d!

(
d∑

e=0

d!
e!(d− e)!

F eGd−e

)
=

d∑

e=0

F e

e!
Gd−e

(d− e)!
=

d∑

e=0

F [e]G[d−e] .
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It is worth noting that, not only does the “binomial” theorem have a nice form for
divided powers but so also does the “multinomial” theorem. I.e.
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Theorem 9.10: Suppose that the Fi, i = 1, . . . , r are homogeneous forms of the same
degree. Then

(F1 + · · · + Fr)[d] =
∑

(α1,...,αr),
∑

αi=d

F [α1]
1 · · ·F [αr]

r .

Proof: We know

(F1 + · · · + Fr)[d] =
1
d!

(F1 + · · · + Fr)d

=
1
d!

∑

(α1,...,αr)
∑

αi=d

(
d

α1 · · ·αr

)
Fα1

1 · · ·Fαr
r .

But, since (
d

α1 · · ·αr

)
=

d!
a1! · · ·αr!

we can distribute the factorials around to get the desired result.

Terminology: If R is a graded k-algebra with a system of divided powers and if F is
homogeneous in R then we refer to F [d] as the dth divided power of F .

Example 9.11: If we look back at Remark 9.6 we see that it is easy to deduce that if

L = a1Y
(e1) + · · · + anY (en) ∈ D1

where D = k{Y (e1), . . . , Y (en)} and k is a field of characteristic 0, then

L[d] =
∑

(α1,...,αn),
∑

αi=d

aα1
1 · · · aαn

n Y ((α1,···,αn)) .

From this formula it appears as if this doesn’t depend on the fact that k had characteristic
0. I.e. in the computation of the divided power, there was a part that involved the
coefficients of the form L and there is a part that involves multinomial coefficients.

Let’s look at another example.

Example 9.12: Let D = Q{Y (e1), . . . , Y (en)} and let F ∈ D2,

F = 3Y ((2,0)) + 5Y ((1,1)) + 7Y ((0,2)) .
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Then

F [2] =
∑

α=(α1,α2,α3),
∑

αi=2

(
3Y ((2,0))

)[α1] (
5Y ((1,1))

)[α2] (
7Y 990,2))

)[α3]
.

Since the possible α are in the set {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)} we’ll
know just about everything about F [2] if we know:

(
3Y ((2,0))

)[2]
= 9

(
1
2!

)
(Y ((2,0)))2 = 9

(
4!

2!2!

)
Y ((4,0))

and (
5Y ((1,1))

)[2]
= 25

(
2!2!
2!

)
Y ((2,2))

and (
7Y ((0,2))

)[2]
= 49

(
4!

2!2!

)
Y ((0,4)) .

Notice that in each case the factor is in Z{Y e1 , . . . , Y (en)} i.e.

F [2] ∈ Z{Y (e1), . . . , Y (en)} .

This is no accident. In fact we have the following very useful fact.

Theorem 9.13: Let F ∈ R = Z{Y (e1), . . . , Y (en)} ⊆ Q{Y (e1), . . . , Y (en)} where F ∈
∪i≥1Ri.

Then

F [d] =
F d

d!
is also in R .

Proof: Let’s write F as a sum of monomials of the form aαY (α). Then, by our previous
observation about the multinomial theorem, we obtain that F [d] is a sum of products of
terms of the form (aαY (α))[e].

But since
(aαY (α))[e] = ae

α

(
1
e!

)(
Y (α)

)e

(where ae
α ∈ Z since aα ∈ Z), it will be enough to show that

1
e!

(
Y (α)

)e
∈ Z{Y (e1), . . . , Y (en)} .
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Recall (Remark 9.2a) that

(
Y (α)

)e
=
(

(eα)!
(α!)e

)
Y (eα)

so it will be enough to show that

1
e!

(eα)!
(α!)e

∈ Z .

But, if α = (α1, . . . , αt) then (eα)! = (eα1)!(eα2)! · · · (eαt)! and so

(eα)!
(α!)e

=
(eα1)!
(α1!)e

· · · (eαt)!
(αt!)e

.

So, the theorem will follow from the following

Lemma: Let d, a be non-negative integers. Then

d!| (da)!
(a!)d

.

Proof: (Thanks to Peter Zion for this quickie!)
Now

(da)!
(a!)d

=
(

da

a · · · a︸ ︷︷ ︸
d−times

)
=
(

da

a

)(
(d− 1)a

a

)
· · ·

(
a

a

)
.

So, it will be enough to show that
Claim: d|

(da
a

)
for any a and any d.

Proof: But, just note that
(

da

a

)
=

(da)(da − 1) · · · (da − a + 1)
a(a − 1)!

=
da

a

(
da − 1
a − 1

)
.

Since
(da−1

a−1

)
is an integer we are done.

We get the following corollary.

Corollary 9.14: Let D = k{Y (e1), . . . , Y (en)}, where k is any field. Then D admits a
system of divided powers.
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Proof: The thing to observe is that it will be enough to know what to make of
(
Y (α)

)[d]
.

But we can calculate that over Z and then take the image of the thing we get in D and
that will be enough. 67

We can now prove the following important theorem – important not so much because
it is hard to prove but rather because of the direction in which it points.

Theorem 9.15: Let R = k[x0, . . . , xn] and D = k{Y (e0), . . . , Y (en)} where k is a field of
arbitrary characteristic.

Let F ∈ Dj and set I = ann(F ). Then

H(R/I,−) = 1 1 · · · 1 1 0 · · ·
(0) (1) (j − 1) (j) (j + 1) (∗)

if and only if F = λL[j] where L ∈ D1 and λ ∈ k∗.
Proof: ⇐: Suppose that F = λL[j] where L = a0Y (e0) + · · · + anY (en).

Then, as we saw in Example 9.11 and Corollary 9.14,

L[j] = λj
∑

(α0,...,αn),
∑

αi=j

aα0
0 . . . aαn

n Y ((α0,...,αn)) .

Now

xi ◦ Y ((α0,...,αn)) =

{ 0 if αi = 0,

Y ((α0,...,αi−1,...,αn)) if αi *= 0 .

Thus

xi ◦ L[j] = λj
∑

(α0,...,αn),αi (=0,
∑

αt=j

aα0
0 · · · aαi

i · · · aαn
n Y ((α0,...,αi−1,...,αn))

= aiλ
j

∑

(β0,...,βn),
∑

βi=j−1

aβ0
0 · · · aβn

n Y ((β0,...,βn)) = aiλ
jL[j−1]

Thus, all first contractions of F are linearly dependent and hence H(R/I,−) is as claimed.

⇒: Conversely, suppose that H(R/I,−) has Hilbert functions (∗). Since H(R/I, 1) = 1 we
have that I1 = (L1, . . . , Ln) where the Li are linearly independent linear forms. We make
a linear change of variables in R (and the analogous change in D) so that I1 = (x1, . . . , xn).
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Since H(R/I, j) = 1 and I is a monomial ideal, we must have that Ij contains all the
monomials of Rj except one, which is obviously seen to be xj

0.
Since we know that I = ann(F ) for some F ∈ Dj we write that F as F =

∑
aαY (α)

where the sum is over those α = (α0, . . . , αn) with
∑

αi = j. Since xα ◦ F = aα = 0 for
every monomial xα ∈ Ij we must have F = λY ((j,0,...,0)) for some λ ∈ k∗.

Since
Y ((j,0,...,0)) =

(
Y (e0)

)[j]
we have F = λ

(
Y (e0)

)[j]

as we wanted to show.

Remark:
1) If we wish, we can consider Theorem 9.15 in characteristic 0 directly and, instead of
taking F ∈ Dj we could consider F ∈ Sj , and use differentiation instead of contraction.
The theorem will then reach the same conclusion about the Hilbert function of I = ann(F ),
but this time if F = λLj where L ∈ S1.

This is clear since if we use the isomorphism φ from S to D (in characteristic 0) then

φ(λLj) = λφ(Lj) = λj!L[j] .

2) Notice that we only used that H(R/I, 1) = 1 to prove⇒. In fact, by Macaulay’s theorem
describing the growth of the Hilbert function, if H(R/I, 1) = 1 then H(R/I, t) = 1 or 0
for any t. So, the knowledge of H(R/I, 1) was all that was really needed.

Theorem 9.16: The set of all Gorenstein quotients of k[x0, . . . , xn] having socle degree
j and Hilbert function (∗) is the closed subvariety of PN (N =

(
j+n

n

)
− 1) which is the

Veronese variety νj(Pn).
In particular, it is a smooth arithmetically Cohen-Macaulay subvariety of PN which

has dimension n and degree jn.

Proof: The last remarks of the theorem are well known, and I won’t go into that right
now, but I do want to explain the connection between these special Gorenstein rings and
the Veronese varieties.

In order to do that I should look again at the definition of the Veronese varieties (see
also Lecture 4). The usual way to describe these varieties is to define them parametrically.
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Let me do that in a particularly simple case and leave the (obvious) generalizations to the
reader.

So, I will look at the above in the case of R = k[x0, x1] and D = k{Y (e0), Y (e1)}.
For a fixed integer j we want to consider a map

νj : P1 −→ P(Dj ) 4 P(j+1
1 )−1 4 Pj .

The parameter map νj is then defined by ordering the monomials of degree j in R in
some way (usually lexicographically):

xj
0 , xj−1

0 x1 , . . . , x0x
j−1
1 , xj

1

then, if P = [a0 : a1] ∈ P1 we define

νj(P ) = νj([a0 : a1]) := [aj
0 : aj−1

0 a1 : . . . : a0a
j−1
1 : aj

1] ∈ Pj ,

i.e. we “evaluate” all the monomials of degree j at the point P . (be careful since “evalua-
tion” is not well-defined, in general, but note why we are OK in this case).

However, if we think of Pj as P(Dj ) - with coordinates - then we can think of it in the
following way:

let F = αj,0Y
((j,0)) + αj−1,1Y

((j−1,1)) + · · · + α1,j−1Y
((1,j−1)) + α0,jY

((0,j)) .

But then
F ↔ [αj,0 : αj−1,1 : . . . : α1,j−1 : α0,j] .

So, in order to understand the image of the Veronese map, νj in this context, we must
figure out which forms F ∈ Dj correspond to points of the form

[aj
0 : aj−1

0 a1 : . . . : a0a
j−1
1 : aj

1] .

But we have already seen that if L = a0Y (e0) + a1Y (e1) then

L[j] =
∑

(u0,u1),u0+u1=j

au0
0 au1

1 Y (u0,u1)
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i.e. L[j] has exactly the coefficients we want. By Proposition 9.15, these are exactly the
forms in Dj which give (by Macaulay duality) the Hilbert function we are considering. 67

As we saw above, if R = k[x0, . . . , xn] then the artinian Gorenstein quotients of R

with socle degree j and Hilbert function beginning 1 1 are parametrized by the Veronese
variety νj(Pn) in P(j+n

n )−1. But, as the next remark shows, this parametrization doesn’t
take into account the notion of isomorphism.

Remark 9.17: If R = k[x0, . . . , xn] and R/I is a (graded) artinian quotient of R with socle
degree j whose Hilbert function begins 1 1 then I must contain n linearly independent
linear forms. With no loss of generality, we can assume those forms are x1, . . . , xn. Thus
I % (x1, . . . , xn) and

R/I 4 (R/(x1, . . . , xn))
(I/(x1, . . . , xn))

=
k[x0]

J

where J = (xj+1
0 ).

Thus, all graded artinian rings having Hilbert function (∗) are isomorphic.
So, isomorphism is not what is at issue here. We are speaking about an “embedded”

phenomena, i.e. a Gorenstein (artinian) quotient of a fixed polynomial ring.

Theorem 9.16 leads us naturally to the following questions:
a) Suppose that we are given a positive integer j and we fix a finite
sequence of non-zero integers, T = (1, t1, . . . , tj = 1) which is sym-
metric, i.e. for which ts = tj−s for all s. How can we describe artinian
Gorenstein rings which are quotients of k[x0, . . . , xn] having that se-
quence as Hilbert function? If the description is (at first) algebraic,
what can we say geometrically about the family of such Gorenstein
rings. Respecting the principle of the “par condicio”, if the descrip-
tion is (at first) geometric, what can we say algebraically about the
family of such Gorenstein rings.

b) Suppose we impose additional algebraic invariants on these Goren-
stein rings (e.g. we specify graded Betti numbers i.e. we fix the free
resolution of the defining ideal) can we say anything geometric about
the family of Gorenstein rings having these invariants?
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In order to make some sense of these questions we need to have a way to decide when
a given F ∈ Dj gives rise to I = ann(F ) with a given Hilbert function.

So, we have as a first sub-problem:

Describe R1F for F ∈ Dj .

Now R1F is a subvector space of Dj−1 spanned by the set of all xα◦F , where degα = 1.
So, we can, once coordinates are chosen, display the coordinates of the xαF as the rows
of a matrix, each row corresponding to an xα in R1. The row space of that matrix will
then describe the space R1F and the rank of the matrix will describe the dimension of
that space.

Example 9.18: Let D = k{Y (e0), Y (e1), Y (e2)} F = Y (3,0,0) + Y (0,2,1) + Y (0,0,3), then we
obtain the following matrix





Y (2,0,0) Y (1,1,0) Y (1,0,1) Y (0,2,0) Y (0,1,1) Y (0,0,2)

x0 1 0 0 0 0 0

x1 0 0 0 0 1 0

x2 0 0 0 1 0 1




= C1

since

x0 ◦ F = Y (2,0,0)

x1 ◦ F = Y (0,1,1)

x2 ◦ F = Y (0,2,0) + Y (0,0,2) .

Since rkC1 = 3 we find that dimk R1F = 3.

If we want to know the dimension of R2F we proceed similarly; this time we take all
the second contractions and express them as vectors in the (lexcicographically ordered)
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monomial basis of Dj−2. Continuing with the example above, we find:





Y (e0) Y (e1) Y (e2)

x2
0 1 0 0

x0x1 0 0 0

x0x2 0 0 0

x2
1 0 0 1

x1x2 0 1 0

x2
2 0 0 1





= C2 .

Notice that Ct
1 = C2. Clearly the fact of the symmetry depended on the ordering we choose

of the monomials and the consistency with which we choose the same ordering on the
monomials of both R and D.

We want to do this all somewhat more systematically.

Definition 9.19: Let F ∈ Dm, D = k{Y (e0), . . . , Y (en)} and write F =
∑

aαY (α) where
degα = m. Choose two positive integers i and j so that i + j = m.

Then the matrix
C = CatF (i; j : n + 1)

is the
(i+n

n

)
×
(j+n

n

)
matrix formed as follows:

let the rows of C be indexed by the monomials xβ ∈ Ri and the
columns indexed by the basis vectors Y (γ) ∈ Dj , then the (β, γ) entry
of C is aα where β + γ = α.

The matrix is called the (i, j)-catalecticant matrix of F .

So, in the terminology we introduced earlier (in Section 6):

CatF (u; v : n + 1) = Mt
n,uMn,v = Zu,v .
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(Unfortunately, in the earlier notation, there was no indication of the number of variables
involved, i.e. of the “n + 1”. I’d like to correct that now and write

Mt
n,uMn,v = Z(n)

u,v .)

So, in Lecture 6, the matrix (†) is Z(2)
1,1 = CatF (1; 1 : 3).

Also, the matrix (††) of Lecture 6 is Z(2)
2,2 = CatF (2; 2 : 3).

The matrix referred to in Example 7.1 is Z(3)
2,2 = CatF (2; 2 : 4).

The matrix referred to in Example 7.2 is Z(4)
2,2 = CatF (2; 2 : 5).)

These catalecticant matrices are critical for determining the Hilbert function of R/I

when I = ann(F ).

Theorem 9.20: Let D = k{Y (e0), . . . , Y (en)} and let F ∈ Dj . Suppose I ⊂ R =
k[x0, . . . , xn] and I = ann(F ).

Then

H(R/I, t) = rk. CatF (t; j − t : n + 1) .

(This is simply a translation, into the language of catalecticants, of some of the things we
saw above.)

Now that we have this way of looking at the Hilbert function of A = R/I, I =
ann(F ), F ∈ Dj , we can rephrase one of the questions we raised earlier.

Choose T = (t0 = 1, t1, . . . , tj−1, tj = 1) a sequence of positive integers for which
tr = tj−r for r = 0, . . . , j and such that tr ≤ dimk Dr .

Aside: Note that, by the symmetry, if:
a) j = 2s, the important numbers in this sequence are just t0, . . . , ts

(since ts−1 = ts+1 etc.);
b) j = 2s + 1, the important numbers in this sequence are still
t0, . . . , ts (but now ts = ts+1 etc.).
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Following the notation of Iarrobino and Kanev in “Length”, I shall use bold-face
characters to describe the set:

Gor(T ) = {F ∈ P(Dj ) | rk(CatF (s; j − s : n + 1)) = ts} .

There is (as yet) no scheme structure on this set. It might even be an empty set if there
is no Gorenstein artinian quotient, A, of R = k[x0, . . . , xn] with H(A, j) = tj for all j.

In fact, it is an open problem to characterize those T for which Gor(T ) is non-empty.
(This is a problem which has been solved for R = k[x0, . . . , xn] only when n = 1, 2. I want
to return to a discussion of this problem in a subsequent lecture.)

92



Lecture 10: Parameter Spaces for Gorenstein Artinian Ideals - Continued

In the last section I used the contraction operation of R on D to define the catalecticant
matrices for an element F ∈ Dj . This is not the classical method of doing things. It is
more usual to see the catalecticant matrices defined by using the differentiation operation
of R on S ( and thus restrict to characteristic 0).

In view of Theorem 3.5 it doesn’t matter which way we look at things in characteristic
0 (while in characteristic p we only have one method available to us).

In this section and the next I shall stay only with characteristic zero. I will do this
because in certain places I use tangent space and limit arguments in my explanations and
I’ve not had a chance to check to see if these arguments are formal enough to be modified
for characteristic p. I suspect that many of them are.

On the other hand, the catalecticant matrices are simpler if I use D (and contraction)
instead of S (and differentiation), and I am unwilling to give up that simplicity! So, I
will stick with the definition of the catalecticants coming from contraction and hope this
“mixing ” of the two actions doesn’t cause the reader undue confusion.

Because Gor(T ) is described using rank conditions on catalecticant matrices, it is
natural to consider the subschemes of P(Sj) defined by these rank conditions.

To describe these schemes let me first recall the following standard notation: if M is
a matrix of size r× s with entries in the ring A, and if t is an integer which is ≤ min{r, s},
then we let It(M) denote the ideal of A which is generated by the t × t minors of M , i.e.
generated by the determinants of all the t× t submatrices of M .

Notation-Definitions 10.1: Let R = k[x0, . . . , xn], S = k[y0, . . . , yn] be our usual start-
ing rings and choose j ∈ N, j ≥ 2, j = 2' or j = 2'+1. Let F ∈ Sj be the generic form in
S of degree j. Let T (n) = (1, t1, . . . , tj−1, 1) be a symmetric sequence of positive integers
for which tr ≤ dimk Rr (we use the (n) in the notation to recall that we are dealing with
quotients of R = k[x0, . . . , xn]). Let R denote the polynomial ring in the coefficients of F
i.e. a homogeneous coordinate ring for P(Sj).

We define

I≤T (n) = It1+1(CatF (1; j − 1 : n + 1)) ∩ . . . ∩ It"+1(CatF ('; j − ' : n + 1)) ⊆ R

and then define

Gor(≤ T (n)) := the subscheme of P(Sj ) defined by the ideal I≤T (n) .
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Clearly, for any given T (n) there are only a finite number of possible other sequences
T ′(n) = (1, t′1, . . . , t

′
j−1, 1), of the type we are discussing, with t′i ≤ ti for all i and, at least

for one integer j, t′j < tj . In such a case we shall say that T ′(n) < T (n).
Notice that if t′ < t then we have It(M) ⊆ It′(M). It follows from this that if

T ′(n) < T (n) then I≤T (n) ⊆ I≤T ′(n) .
We then define

Gor(T (n)) := the complement, in Gor(≤ T (n)) of the union
of the schemes Gor(≤ T ′(n)) for every T ′(n) < T (n).

Thus Gor(T (n)) is an open subscheme of Gor(≤ T (n)).

Having made these definitions we can now identify:

Gor(≤ T (n)) with Gor(≤ T (n))red and Gor(T (n)) with Gor(T (n))red .

One might want to concentrate on only one part of the sequence T (n). Thus, it is
reasonable to define the sets:

U≤t(u; j − u : n + 1) = {F ∈ P(Sj ) | rk(CatF (u; j − u : n + 1)) ≤ t}

and
Vt(u; j − u : n + 1) = {F ∈ P(Sj) | rk(CatF (u; j − u : n + 1) = t} .

(Note again the use of bold face to denote sets.)
Coupled with these definitions are:

U≤t(u; j − u : n + 1) := subscheme of P(Sj ) defined by It+1(CatF (u; j − u : n + 1)) ⊆ R

and
Vt(u; j − u : n + 1) := the open subscheme of U≤t(u; j − u : n + 1)

whose complement is U≤(t−1)(u; j − u : n + 1) .

Note that
U≤t(..) = Ured

≤t (..) and Vt(..) = Vred
t (..) .

This has been a very heavy dose of notation; let’s now look at some very specific
examples.
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Example 10.2: We will consider the possibilites for artinian Gorenstein quotients of
R = k[x0, . . . , xn] which have socle degree 2.

In other words, take F a generic form of degree 2 in S = k[y0, . . . , yn].
If we write F =

∑
Zijyiyj then the only catalecticant that enters into the discussion

is:

CatF(1; 1 : n + 1) =





y0 y1 · · · · · · yn

x0 Z00 Z01 · · · · · · Z0n

x1 Z01 Z11 · · · · · · Z1n
...

. . .
...

. . .

xn Z0n Z1n · · · · · · Znn





.

Notice that this is the generic symmetric matrix of size (n+1)× (n+1). So, if F ∈ S2

is a specialization of F and I = ann(F ) then H(R/I,−) = 1 ? 1 .

Now the (?) in the Hilbert function above is exactly the rank of the matrix obtained
by specializing the coefficients of F to those of F . But, from the theory of quadratic forms,

rk(CatF (1; 1 : n + 1)) = r (≤ n + 1) ⇔ F = L2
1 + · · · + L2

r

where L1, . . . , Lr are linearly independent linear forms in S1.
Thus we get the following simple fact:

Proposition 10.3: Let F ∈ S2 (as above) and let I = ann(F ). Then

H(R/I,−) = 1 r 1 (r ≤ n + 1) ⇔ F = L2
1 + · · · + L2

r ⇔ F ∈ Secr−1(ν2(Pn))

where L1, . . . , Lr are linearly independent linear forms in S1.

Notice that in this case, the only Hilbert functions we get are totally ordered by
inequality. I.e.

if T (n)
s = (1, s, 1) then T (n)

1 < T (n)
2 < · · · < T (n)

n < T (n)
n+1 .

Thus, Gor(≤ T (n)
s ) is the subscheme of P(S2) defined by Is+1(CatF (1; 1 : n+1)). I.e. these

are the subschemes of PN (N =
(n+2

2

)
−1) defined by the vanishing of the minors of a generic
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symmetric matrix of size n + 1. From 10.3 we see that Gor(≤ T (n)
r ) = Secr−1(ν2(Pn)).

But, it is not clear if Gor(≤ T (n)
r ) is a reduced scheme.

In his book (The Geometry of Determinantal Loci) T.G. Room gives both the dimen-
sion and the degrees of these varieties. In Room’s notation (see 8.6.3 or 8.6.4, pg. 141 of
his book) the variety we are considering (i.e. Gor(≤ T (n)

r )) is:

(S, |n + 1, n + 1|r, [
(

n + 2
2

)
]) or Yr

and he gives the formula for the dimension of this variety as

dim(Gor(≤ T (n)
r )) =

r(2n + 3) − r2 − 2
2

.

In particular, when r = 1 we get that dim(Gor(≤ T (n)
1 )) = n. This is in agreement

with our earlier observation that Gor(T (n)
1 ) = ν2(Pn). (Note that there is no Hilbert

function smaller that T (n)
1 .)

Also, when r = n we get that dim(Gor(≤ T (n)
n )) =

(n+2
2

)
− 2, i.e. this variety is a

hypersurface in P(S2). This corresponds to the fact that the equation of the hypersurface
is nothing more than det(CatF(1; 1 : n + 1)).

However, when r = 2 we get:

dim(Gor(≤ T (n)
2 )) = dim(Sec1(ν2(Pn))) = 2n .

Thus, Sec1(ν2(Pn)) has deficiency 1 since the “expected” dimension of this variety is 2n+1.
Also, when r = 3 we get

dim(Gor(≤ T (n)
3 )) = dimSec2(ν2(Pn))) = 3n− 1 .

Since the “expected” dimension is 3n + 2, the deficiency here is 3.
In general the expected dimension of Gor(≤ T (n)

r ) = Secr−1(ν2(Pn)) is rn + r − 1
while the actual dimension was given above. So, the deficiency is easily calculated to be
r(r − 1)/2 for every r ≤ n. (I will leave it to the interested reader to use this information
to write down the value of the Hilbert function of R/J in degree 2 when

J = ℘2
1 ∩ ℘2

2 ∩ . . . ∩ ℘2
r
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for r ≤ n + 1.)
Aside: I believe that all the varieties Gor(≤ Tr) above are reduced
and are arithmetically Cohen-Macaulay and also that their resolutions
as algebras are know. I recall some early work of Gulliksen and later
work of Jozefiak, Pragacz and Weyman on this problem – which I have
been unable to verify yet. My recollection is that they had a generic
resolution for the ideals of minors of symmetric matrices. One should
be able to give a more algebraic proof of Room’s assertions using this
approach, and also an independent proof of the next result, which
gives the degrees of these varieties. (See the update in Lecture 11.)

Room also states a result (pg.133) which gives a formula for the degrees of the varieties
Gor(≤ T (n)

s ), namely

deg(Gor(≤ T (n)
r )) =

(
n+1

n+1−r

)
· · · · · ·

(
2(n+1)−(r+2)

2

)(
2(n+1)−(r+1)

1

)
(2(n+1)−(2r+1)

n+1−r

)
· · · · · ·

(3
2

)(1
1

) .

I’ve been unable to find a nicer expression for this, but I did do some calculations
which I will share in an appendix to this section.

Remark: I am uncomfortable about putting too much credence in Room’s calculations
since it is not at all clear if he is calculating the dimensions and degrees of the schemes
defined by the ideals of minors or he is finding the degrees and dimensions of the associated
reduced schemes. Since the schemes are irreducible the dimension count is fine, but the
degree count remains a conjecture until we are sure all the schemes above are reduced!

I should mention that, with respect to the calculation of the degree, Room uses the
expression “We assume the order of Ys is ....” (and then he gives the formula above and cites
both C. Segre and H.F. Baker). I don’t quite understand the use of the word “assume”,
unless he was unable to give his own demonstration of the result and wanted to make that
clear. This is another reason for my unease over using Room as a proper reference for this
result. (Again, see the update in Lecture 11.)

I’d like to now move onto a discussion of (artinian) Gorenstein graded rings of socle
degree 3.
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We continue with our usual notation: R = k[x0, . . . , xn], S = k[y0, . . . , yn] and F ∈ S3,
I = ann(F ) ⊆ R. As in the case of socle degree 2, we still do not have many possibilities
for the Hilbert function of R/I. Those possibilities are:

H(R/I,−) = 1 r r 1 where r ≤ n + 1 .

Again, as in the case of socle degree 2, the sequences T (n) for which Gor(T (n)) is potentially

non-empty are linearly ordered. If T (n)
r = (1, r, r, 1) then

T (n)
1 < T (n)

2 < · · · < T (n)
n+1 .

Proposition 10.4:
Gor(T (n)

r ) *= ∅ for r = 1, 2, . . . , n + 1.

Proof: It suffices to find forms Ft, all of degree 3, for which dimk R1Ft = t for (1 ≤ t ≤
n + 1).

But, this is easy, just consider Ft = y3
0 + · · · + y3

t−1. 67

Remark 10.5: Clearly, if Ft = yj
0 + · · · + yj

t then dimk RiFt = t + 1 for i = 1, . . . , j − 1.
It follows that if

T (n) = (1, t + 1, t + 1, . . . t + 1, t + 1, 1︸ ︷︷ ︸
j+1− tuple

) (t + 1 ≤ n + 1)

then Gor(T (n)) *= ∅.

Continuing with this remark, suppose that F ∈ Sj is a form with the property that
I = ann(F ) gives a Gorenstein artinian ring A = R/I for which

H(R/I,−) = 1 r r · · · r r 1 where r < n + 1 .

Then I1 contains n + 1 − r linearly independent linear forms which, after a change of
variables, we can assume are xr , . . . , xn. But, if xi ◦ F = 0, this implies that yi does not
appear in F . Thus, there is no loss of generality in assuming that F is a polynomial in
k[y0, . . . , yr−1].
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Returning to the case of socle degree 3, we see that if F ∈ S3 and I = ann(F ) ⊆ R

then H(R/I,−) is determined by the ranks of the two matrices:

CatF (1; 2 : n + 1) and CatF (2; 1 : n + 1) .

But, since these matrices are the transposes of each other, we need only consider the first.

The generic F in S3 may be written:

F =
∑

Zijkyiyjyk where 0 ≤ i ≤ j ≤ k ≤ n

and so CatF(1; 2 : n + 1) is an (n + 1)×
(
n+3

3

)
matrix:

CatF(1; 2 : n + 1) =





y2
0 y0y1 · · · y0yn y2

1 y1y2 · · · y1yn · · · y2
n

x0 Z000 Z001 · · · Z00n Z011 Z012 · · · Z01n · · · Z0nn

x1 Z001 Z1nn
...
xn Z00n Z01n · · · Z0nn Z11n Z12n Z1nn · · · Znnn





(recall we also called this matrix Z(n)
1,2 ).

We start by considering T (n)
1 = (1, 1, 1, 1).

Now Gor(≤ T (n)
1 ) is defined by the ideal I2(CatF (1; 2 : n + 1)), so (to use the earlier

notation) Gor(≤ T (n)
1 ) = U≤2(1; 2 : n + 1). We saw, last time, that Gor(T (n)

1 ) = ν3(Pn),
and so the first question that comes to mind is:

Problem 10.6: Is Gor(≤ T (n)
1 ) = ν3(Pn) also?

Note that this is a problem for every n and for every j, i.e. not only for T (n)
1 =

(1, 1, 1, 1), but also for T (n) = (1, 1, . . . , 1, 1)︸ ︷︷ ︸
j+1−tuple

.

So, our question really amounts to asking if the ideal I2(CatF (1; j − 1 : n + 1)) is the
defining (prime) ideal of νj(Pn). I don’t know the answer to this.
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Also interesting would be a proof that

I2(CatF(1; j − 1 : n = 1)) = I2(CatF(u; v : n + 1)) when u + v = j .

Let’s now move on to Gor(≤ T (n)
2 ), T (n)

2 = (1, 2, 2, 1). This is the subscheme of PN

(N =
(n+3

3

)
− 1) defined by I3(CatF(1; 2 : n + 1)).

As we saw earlier, if L1 and L2 are linearly independent linear forms in S1 and
F = L3

1 + L3
2 then the forms in I3(Z(n)

1,2 ) all vanish on F . Thus

Gor(≤ T (n)
2 ) ⊇ Sec1(ν3(Pn)) .

Problem 10.7

Is Gor(≤ T (n)
2 ) = Gor(≤ T (n)

2 ) = Sec1(ν3(Pn)) ?

I made a calculation (on a small computer) with the computer programme Macaulay
(for the case n = 2) and found that the answer to Problem 10.7 is Yes, in that case. (My
computer took a while to make the calculation of Sec1(ν3(P2)) and that is what stopped
me from checking the case n = 4.)

I can give an answer to the “reduced” part of Problem 10.7, but for me to do that I’ll
need to take a small (but interesting) detour. First, though, the promised calculations.

Appendix

ν2(P3) ⊆ P9:
dimension degree

Sec1 6 10

Sec2 8 4

ν2(P4) ⊆ P14:
dimension degree

Sec1 8 35

Sec2 11 20

Sec3 13 5
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ν2(P5) ⊆ P20:
dimension degree

Sec1 10 18

Sec2 14 112

Sec3 17 35

Sec4 19 6

ν2(P6) ⊆ P27:
dimension degree

Sec1 12 562

Sec2 17 672

Sec3 21 294

Sec4 24 56

Sec5 26 7
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Lecture 11: Some final words – for now!

Updates: I distributed these notes to some friends who are not attending the seminar
and I received some remarks from them about some of the things that I was questioning.
I want to share those comments with all of the readers of these notes.

As we saw in Lecture 10, the study of the varieties Gor(≤ T ) and Gor(≤ T ) for
Gorenstein artinian quotients of R = k[x0, . . . , xn] having socle degree 2 is equivalent
to the study of the scheme defined by the ideal of all fixed size minors of the generic
(n + 1) × (n + 1) symmetric matrix.

I voiced (if one can do that in print!) some doubts about taking Room’s calculations
of degrees (for the varieties so defined) too seriously since it wasn’t clear if Room was
speaking of the scheme defined by these minors or of the reduced scheme with the same
support.

A note from Tony Iarrobino (with a reference to the book of Arbarello, Cornalba,
Griffiths and Harris - Exercises on page 100-101) makes clear that the ideal generated by
the t× t minors of the generic symmetric matrix is prime and so all of Room’s calculations
are placed on a firm footing.

The paper of Jozefiak, Pragacz and Weyman that is relevant here, is in Asterique
(87-88), 1983, 109-189. They give a resolution of this ideal of minors, which has (theoret-
ically) all of Room’s calculations as a consequence – plus more! – since one can calculate
the Hilbert polynomial of this variety from any resolution and the coefficients contain
information on the degree, dimension and other invariants.

Bruce Reznick (Urbana) was kind enough to point out some historical points (which
are contained in his book - Sums of Even Powers of Real Linear Forms - AMS Memoir,
No. 463, 1992). I quote from page 49 of that book:

“Sylvester was an excellent prosodist, and a “catalectic” line of verse
is one which is lacking part of the last foot.

A form which is a sum of fewer mth powers than is canonically
required thereby exhibits catalecticism.”

(From Iarrobino I learned that the word is derived from the Greek - Katalektikos -
meaning cut-off or incomplete. )

Reznick, with a straight face, (if you can do that in print!) goes on to point out that

102



Sylvester was not completely happy with his choice of term. Sylvester is quoted as follows:
“Meicatalecticizant would more completely express the meaning of that which, for the sake
of brevity, I denominate the catalecticant.”

I also learned from Reznick (see pgs 59-60 of the book mentioned above) that Sylvester
also discovered Examples 7.1 and 7.2 while discussing Clebsch’s example (see the beginning
of our Lecture 6) in a paper. (Sylvester’s paper is: Sur une extension d’un theoreme de
Clebsch relatif aux courbes du quatrieme degre, C.R.Acad.Sci.(102) 1886, 1532-34 – Paper
47 in the Collected Papers, vol. 4, Cambridge Univ. Press, 1912). Apparently Sylvester
found these examples “paradoxal” and used them to make a warning about excessive
“counting of constants”.

With all of this help I am still without an historical reference to Example 7.3 (cubics
in 5 variables).

************************************

Recall that last time we were looking at the case of socle degree 3 Gorenstein artinian
quotients of R = k[x0, . . . , xn]. We had noted that such quotients all had Hilbert function

T (n)
r = 1 r r 1 where r ≤ n + 1

and that Gor(T (n)
r ) *= ∅ for r = 1, . . . , n + 1.

For this socle degree, the only catalecticant matrix that comes into play is:

CatF(1; 2 : n + 1) =





y2
0 y0y1 · · · y0yn y2

1 y1y2 · · · y1yn · · · y2
n

x0 Z000 Z001 · · · Z00n Z011 Z012 · · · Z01n · · · Z0nn

x1 Z001 Z1nn
...
xn Z00n Z01n · · · Z0nn Z11n Z12n Z1nn · · · Znnn




.

So, Gor(≤ T (n)
r ) is defined by Ir+1(CatF (1; 2 : n + 1)). We had discussed this for

r = 1 and were in the middle of a discussion of this problem for r = 2.
We had already seen that:

Gor(≤ T (n)
2 ) ⊇ Sec1(ν3(Pn))
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(and in Problem 10.7 we had asked if these were equal to each other and, in turn, equal
to Gor(≤ T (n)

2 ).) We now turn to that “reduced” problem.

Trying to decide if a given variety is a secant variety to the Veronese would certainly
be easier if we knew more about what the elements of Secs−1(νj(Pn)) ⊆ P(Sj) look like.
We know that forms like F = Lj

1+· · ·+Lj
s (the Li linear forms in S1) are in Secs−1(νj(Pn))

but it’s not clear what the “limiting” positions of such F ’s look like.
There is, however, for the case of the chordal variety (of a smooth variety) a complete

description of the elements of Sec1(X) (where X is smooth inside Pr). It is the best one
could hope for:

Sec1(X) consists of all the points on all the secant lines of X plus
all the points on all the tangent spaces to points of X ⊆ Pr . (see e.g.
Harris - Prop. 15.10, pg. 191).

So, continuing with our thinking of νj(Pn) ⊆ P(Sj), we should ask if there is a nice
characterization of those F ∈ P(Sj) which correspond to points in the tangent space to
νj(Pn) at one of its points. The answer is YES.

Lemma 11.1: F ∈ Sj is in the tangent space to νj(Pn) ⊆ P(Sj) at the point Lj
1 if and

only if there is a linear form L2 ∈ S1 such that F = Lj−1
1 L2.

Proof: If L1 = a0y0 + · · · + anyn, let P1 = [a0 : . . . : an] ∈ Pn. The points in the tangent
space to νj(Pn) at νj(P1) come by considering all tangent vectors to curves in νj(Pn) which
are smooth at νj(P1).

Let P2 = [b0 : . . . : bn] be any other point of Pn and let L be the line in Pn which joins
P1 to P2. Then νj : L → C, where C ⊆ νj(Pn) is a rational normal curve of degree j which
is in some Pj ⊆ P(Sj).

We can parametrize the points in L by P1 + tP2 and then, if L2 = b0y0 + · · · + bnyn,
we have

νj(P1 + tP2) = (L1 + tL2)j .

Thus,
d

dt
(L1 + tL2)j = j(L1 + tL2)j−1L2 .
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To find the tangent vector at νj(P1) we just need to evaluate this derivative when
t = 0. In this way we get

d

dt
(L1 + tL2)j |t=0 = jLj−1

1 L2 .

Thus, the point in the tangent space at Lj
1 is:

Lj
1 + jLj−1

1 L2 = Lj−1
1 (L1 + jL2) = Lj−1

1 L′
2

for some linear form L′
2.

If we let P2 vary over all directions from P1 we get the entire tangent space to vj(Pn)
at νj(P1) = Lj

1. That completes the proof.

Note: If F = Lj−1
1 L2 = M j−1

1 M2 (and j > 1) then L1 = M1 and L2 = M2. Thus, a point
of P(Sj) can be on the tangent space to at most one point of νj(Pn).

Now for the promised portion of a solution to Problem 10.7.

Proposition 11.2:
Gor(≤ T (n)

2 ) = Sec1(ν3(Pn)) .

Proof: If R/I has Hilbert function with H(R/I, 1) = 2, then, by Remark 10.5, we can
assume that F is a form of degree 3 which only involves y0 and y1. Now we showed earlier
that Sec1(ν3(P1)) = P3 = P(k[y0, y1]3) and so every form of degree 3 in k[y0, y1] is in that
secant variety, i.e. every form of degree 3 in k[y0, y1] can be written either as L3

1 + L3
2,

or as L2
1L2 with L1 and L2 linear forms in k[y0, y1]. In view of Proposition 11.1, that is

enough to prove the result.

The next case to consider, in socle degree 3, is T (n)
3 = (1, 3, 3, 1).

Suppose first that n = 2: In this case we have that

Gor(T (2)
1 ) ⊆ Gor(T (2)

2 ) ⊆ Gor(T (2)
3 ) ⊆ P9 = P(S3) .

We’ve already seen that for T (2)
2 = (1, 2, 2, 1) we have

Gor(≤ T (2)
2 ) = Sec1(ν3(P2)) ⊆ P9 .
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This is a variety of dimension 5 in P9.
Clearly, Gor(≤ T (2)

3 ) = P9 since every form in 3 variables can have at most 3 linearly
independent first derivatives!

Notice that Sec2(ν3(P2)) is a hypersurface in P9 and so is strictly smaller than P9 =
Gor(≤ T (2)

3 ). Thus, not all these varieties Gor(≤ T ) are secant varieties of appropriate
Veronese varieites.

(By the way, I have no idea where the equation of that hypersurface really comes from.
One can compute it, with either CoCoA or Macaulay, (but I have been unable to get my
little computer to do the work required!) and get its degree, but that won’t really explain
where it comes from! There are lots of examples like this one, where a secant variety of
νj(Pn) is a hypersurface in its enveloping space and j is odd! In which case there is no
obvious candidate for a determinant to explain the equation of the hypersurface. I think
that finding these equations, and where they really come from, is a very interesting
problem!)

Note added: On June 12, 1995, using a larger computer than my
laptop, a group of mathematicians in Genova computed the equation
for this hypersurface. It is an equation of degree 4 (which was also
not clear!).

The equation is:

x4
4 − 2x3x

2
4x5 + x2

3x
2
5 + x2x4x5x6 − x1x

2
5x6 − 2x2x

2
4x7 − x2x3x5x7 + 3x1x4x5x7

+x2
2x

2
7 + x0x5x

2
7 + 3x2x3x4x8 − 2x1x

2
4x8 − x1x3x5x8 + x2

2x6x8 + x0x5x6x8

−x1x2x7x8 + x0x4x7x8 + x2
1x

2
8 + x0x3x

2
8 − x2x

2
3x9 + x1x3x4x9 + x1x2x6x9

−x0x4x6x9 − x2
1x7x9 + x0x3x7x9 .

Now suppose that n ≥ 3:
This case points out a very general situation which occurs not only in socle degree 3

but in any socle degree j when H(R/I, 1) = r < n + 1 (the number of variables). I would
thus like to deal with this very general situation at this time.

Recall that we saw, in Lecture 10 (Remark 10.5), that if I = ann(F ), degF = j and
H(R/I, 1) = r < n + 1 then we could find L0, . . . , Lr−1, linearly independent linear forms
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in S = k[y0, . . . , yn] such that F ∈ k[L0, . . . , Lr−1]. What I didn’t mention then was that
these linear forms are “essentially” unique!

To be more precise about that, let me state a simple linear algebra fact that is at the
heart of the matter.

Lemma 11.3: Let V be a vector space of dimension n and let W be a subspace of
dimension m < n.

Suppose that B = {e1, . . . , em} is a fixed basis for W and that

E = {e1, . . . , em, v1, . . . , vn−m} and E ′ = {e1, . . . , em, v′
1, . . . , v

′
n−m}

are two bases for V which extend B.
If E∗ = {f1, . . . , fm, g1, . . . , gn−m} and E ′∗ = {f ′

1, . . . , f
′
m, g′

1, . . . , g
′
n−m} are dual bases

to E and E ′ in V ∗, then

< g1, . . . , gn−m >=< g′
1, . . . , g

′
n−m > .

Proof: One need only observe that both spaces are exactly W⊥.

Corollary 11.4: Let R = k[x0, . . . , xn], S = k[y0, . . . , yn] where F ∈ Sj and I = ann(F ).
Suppose that H(R/I, 1) = r < n + 1.

If F ∈ k[L0, . . . , Lr−1]∩k[L′
0, . . . , L

′
r−1] where the Li and L′

i are (individually) linearly
independent sets of linear forms in S1, then

< L0, . . . , Lr−1 >=< L′
0, . . . , L

′
r−1 > .

I.e. the polynomial ring in r variables to which F belongs is uniquely determined by F .

Proof: In view of Lemma 11.3 we need only observe that F ∈ k[W ] where W = I⊥
1 and

that is enough to prove the corollary.

Now let F ∈ k[y0, . . . , yn]j be a generic form of degree j and consider

CatF(1; j − 1 : n + 1) an (n + 1) ×
(

j + n

n

)
−matrix
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and
U≤r(1; j − 1 : n + 1) = {F ∈ P(Sj) | rankkCatF(1; j − 1 : n + 1) ≤ r}

(which is defined by
√

Ir+1(CatF(1; j − 1 : n + 1)).)
If we suppose that r ≤ n + 1 then what we have just shown is that

U≤r(1; j − 1 : n + 1)

= {F ∈ P(Sj) | F ∈ k[L0, . . . , Lr−1], L0, . . . , Lr−1 linearly independent linear forms }

Proposition 11.5: U≤r(1; j− 1 : n +1) is an irreducible projective variety of dimension

r(n + 1− r) +
(

j + r − 1
r − 1

)
− 1 .

Proof: Let G be the Grassmanian of Pr−1’s in Pn (so G is a projective variety of dimension
r(n+1−r)). Then, the points of G parametrize the r dimensional subspaces of S1 and hence
each point P ∈ G, (P ↔ V , V an r-dimensional subspace of S1) describes a polynomial
subring k[L0, . . . , Lr−1] ⊂ S where < L0, . . . , Lr−1 >= V . Then P(k[L0, . . . , Lr−1]j) is a
projective space of dimension N =

(j+r−1
r−1

)
− 1 which parametrizes the forms of degree j

(up to scalar multiples) in k[L0, . . . , Lr−1].
This gives us a regular function (in fact a surjection),

φ : G × PN −→ U≤r(1; j − 1 : n + 1) = U≤r

where
φ :< L0, . . . , Lr−1 > ×F (Z0, . . . , Zr−1) −→ F (L0, . . . , Lr−1) .

Now, if F ∈ P(Sj ) is such that rankkCatF(1; j − 1 : n + 1) = r (exactly) then we saw that
F determines < L0, . . . , Lr−1 >. Since rkkCatF(1; j − 1 : n + 1) = r on a non-empty open
subset O in U≤r we obtain that the fibres of φ over O consist of exactly one point. Thus,

the dimension of U≤r = the dimension of G × PN = r(n + 1− r) +
(

j + r − 1
r − 1

)
− 1

as we wanted.
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Since both G and PN are irreducible, so is U≤r.

This Proposition makes for some very obvious questions.

Problem 11.6:
1) Is Ir+1(CatF (1; j − 1 : n + 1)) a prime ideal for r < n + 1 ?
2) Is

√
Ir+1(CatF (1; j − 1 : n + 1)) = ℘ a perfect ideal? i.e. is R/℘

an arithmetically Cohen-Macaulay variety.
3) Is U≤r(1; j− 1 : n+1) a well-known variety? (we saw, when r = 2
and j = 3 that it was Sec1(ν3(Pn)).
4) What are some numerical invariants of U≤r (e.g. degree, Hilbert
function, Hilbert polynomial, graded Betti numbers, etc...) (We see,
from above, that it is a rational variety.)

If we return now to the case of socle degree 3 we see that everything is determined by
the one matrix CatF(1; 2 : n + 1) where F is a generic element of S3. So, we have

Gor(≤ T (n)
1 ) ⊆ Gor(≤ T (n)

2 ) ⊆ · · · ⊆ Gor(≤ T (n)
n )

‖ ‖ ‖
ν3(Pn) Sec1(ν3(Pn)) P(S3)

where all of the varieties are irreducible and rational and

the dimension of Gor(≤ T (n)
r ) = r(n + 1− r) +

(
r + 2
r − 1

)
− 1 .

Moreover, when r > 3, Secr−1(ν3(Pn)) & Gor(≤ T (n)
r ). E.G. when r = 3 we know that

Sec2(ν3(Pn)) has dimension 3n + 2 but Gor(≤ T (n)
3 ) has dimension 3n + 3.

Remark: Iarrobino has shown that the singular locus of Gor(≤ T (n)
r ) is exactly Gor(≤

T (n)
r−1) for the case of j = 3. This might easily be true for any j, if we just look at the

vanishing locus for the ideals of minors of the first catalecticants, as above. Iarrobino also
remarks that, in general, the answer to 11.6 1), is no. He and Kanev have examples. We
must then ask when the answer to 1) is yes.
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The case of socle degree 4

We continue with our usual notation:

R = k[x0, . . . , xn], S = k[y0, . . . , yn], F ∈ S4, R ⊇ I = ann(F ), A = R/I .

Then
H(R/I,−) := 1 a b a 1 0 · · ·

where
1 ≤ a ≤ n + 1

a ≤ b ≤
(n+2

2

) .

First Observations:
1) Note that this time we have two catalecticant matrices to consider. If F is a generic
form of degree 4 “in” S4 we write

C(n)
1 = CatF(1; 3 : n + 1) ( an (n + 1)×

(
n + 3

3

)
matrix)

and
C(n)
2 = CatF(2; 2 : n + 1)( an

(
n + 2

2

)
×
(

n + 2
2

)
symmetric matrix ) .

2) If a = n+1 then the matrix C(n)
1 never enters into the discussion! and everything rests

on the square symmetric matrix C(n)
2 .

This is the second time we have come across j even and a symmetric matrix! Classi-
cally, it was this “central” matrix (and its determinant) which occupied people’s attention.
Some people even refer to the determinant of this central matrix as the catalectic invariant
of F .
3) of course, if a < n + 1 then our earlier discussion comes into play and rkC(n)

1 ≤ a takes
place on the irreducible variety U≤a(1; 3 : n + 1) which we discussed earlier.

Hence, if we let
T (n)

a,b = (1, a, b, a, 1)

then if a < n + 1 we have

Gor(≤ T (n)
a,b ) = U≤b(2; 2 : n + 1) ∩U≤a(1; 3 : n + 1)
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while if a = n + 1 we have

Gor(≤ T (n)
a,b ) = U≤b(2; 2 : n + 1) .

It is interesting to look at the special case of n = 1, i.e. R = k[x0, x1], S =
k[y0, y1], F ∈ S4, P(S4) 4 P4, and

F = Z1x
4
0 + Z2x

3
0xx1 + Z3x

2
0x

2
1 + Z4x0x

3
1 + Z5x

4
1 .

In this case there are only a few possibilities for T (1)
a,b , namely:

(1, 1, 1, 1, 1) = T (1)
1,1

(1, 2, 2, 2, 1) = T (1)
2,2

(1, 2, 3, 2, 1) = T (1)
2,3

(Exercise: Show that (1, 2, 1, 2, 1) is not possible.)
The matrices in question are:

C(1)
1 =

(
Z1 Z2 Z3 Z4

Z2 Z3 Z4 Z5

)

and

C(1)
2 =




Z1 Z2 Z3

Z2 Z3 Z4

Z3 Z4 Z5



 .

It is well-known (see the new book of Harris mentioned earlier and the paper of J.
Watanabe in this volume) that:

a) the ideal I2(C(1)
1 ) is the ideal of the rational normal curve in P4,

i.e. of ν4(P1)), and

b) the ideal I2(C(1)
2 ) is the prime ideal which defines the rational

normal curve in P4; and the ideal I3(C(1)
2 ) = det(C(1)

2 ) is the equation
of the hypersurface Sec1(ν4(P1)) ⊆ P4.

We have
Gor(≤ T (1)

1,1 ) ⊆ Gor(≤ T (1)
2,2 ) ⊆ Gor(≤ T (1)

3,3 )

‖ ‖ ‖

νr(P1) ⊆ Sec1(ν4(P1)) ⊆ P4

The situation changes dramatically when n ≥ 2.
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n=2:
Again there are only a few possibilities for T (2)

a,b , where 1 ≤ a ≤ 3 and 1 ≤ b ≤ 6.
We only have the following:

(1, 1, 1, 1, 1) (1, 2, 2, 2, 1)
(1, 2, 3, 2, 1) (1, 3, 3, 3, 1)
(1, 3, 4, 3, 1) (1, 3, 5, 3, 1)
(1, 3, 6, 3, 1)

(while the following are impossible (Exc.) (1, 2, 1, 2, 1), (1, 3, 1, 3, 1), (1, 3, 2, 3, 1).)
Already the situation is much more delicate. Even finding the possible T ’s has now

become a more subtle task (Although for n = 2 and any j, this problem was solved by R.
Stanley.)

There were conjectures which sought to describe the possible T (n)
a,b for n ≥ 3 but

these have all been disposed of by examples of Stanley, Bernstein-Iarrobino, and Boij-
Laksov. E.g. Stanley has found an example of a Gorenstein artinian algebra which gives
T = (1, 13, 12, 13, 1), but no example (where the initial part decreases) can exist for j = 3
and a ≤ 8 (I was informed of the existence of this latter result by an e-mail of Iarrobino
who attributes it to Peskine. I don’t know where the proof has appeared, or if it has
appeared.) Needless to say, the absence of even a good conjecture for the possible T ’s
which can describe the Hilbert function of a Gorenstein artin algebra points out a part of
the subtlety of the problem for n ≥ 3.

****************************************************
Unfortunately, I have no more time this term to talk about the many more interesting

things that are known. There are, e.g., many interesting results in the paper of Iarrobino
and Kanev (that I have continually refereed to) but I think that it is fair to say that our
understanding of the structure of these varieties is just beginning. I hope to continue these
discussions next year ...
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