CHAPTER 111

Cohomology

In this chapter we define the general notion of cohomology of a sheaf of
abelian groups on a topological space, and then study in detail the coho-
mology of coherent and quasi-coherent sheaves on a noetherian scheme.

Although the end result is usually the same, there are many different ways
of introducing cohomology. There are the fine resolutions often used in
several complex variables—see Gunning and Rossi [1]; the Cech coho-
mology used by Serre [3], who first introduced cohomology into abstract
algebraic geometry; the canonical flasque resolutions of Godement [1]; and
the derived functor approach of Grothendieck [1]. Each is important in its
own way.

We will take as our basic definition the derived functors of the global
section functor (§1, 2). This definition is the most general, and also best
suited for theoretical questions, such as the proof of Serre duality in §7.
However, it is practically impossible to calculate, so we introduce Cech
cohomology in §4, and use it in §5 to compute explicitly the cohomology of
the sheaves ()(n) on a projective space P". This calculation is the basis of
many later results on projective varieties.

In order to prove that the Cech cohomology agrees with the derived
functor cohomology, we need to know that the higher cohomology of a
quasi-coherent sheaf on an affine scheme is zero. We prove this in §3 in the
noetherian case only, because it is technically much simpler than the case
of an arbitrary affine scheme ([EGA 111, §1]). Hence we are bound to in-
clude noetherian hypotheses in all theorems involving cohomology.

As applications, we show for example that the arithmetic genus of a
Projective variety X, whose definition in (I, §7) depended on a projective
¢mbedding of X, can be computed in terms of the cohomology groups
H'(X,C ), and hence is intrinsic (Ex. 5.3). We also show that the arithmetic
genus is constant in a family of normal projective varieties (9.13).
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IIT1 Cohomology

Another application is Zariski's main theorem (11.4) which is important
in the birational study of varieties.

The latter part of the chapter (§8—12) is devoted to families of schemes,
i.e., the study of the fibres of a morphism. In particular, we include a section
on flat morphisms and a section on smooth morphisms. While these can
be treated without cohomology, it seems to be an appropriate place to
include them, because flatness can be understood better using cohomology
(9.9).

1 Derived Functors

In this chapter we will assume familiarity with the basic techniques of
homological algebra. Since notation and terminology vary from one source
to another, we will assembile in this section (without proofs) the basic defini-
tions and results we will need. More details can be found in the following
sources: Godement [1, esp. Ch. I, §1.1-1.8, 2.1-2.4, 5.1-5.3], Hilton and
Stammbach [ 1, Ch. ILIV,IX], Grothendieck [1, Ch. II, §1,2,3], Cartan and
Eilenberg [ 1, Ch. IIL,V], Rotman [1, §6].

Definition. An abelian category 1s a category 2, such that: for each A,B e
Ob A, Hom(A4,B) has a structure of an abelian group, and the composi-
tion law is linear; finite direct sums exist; every morphism has a kernel
and a cokernel; every monomorphism is the kernel of its cokernel, every
epimorphism is the cokernel of its kernel; and finally, every morphism
can be factored into an epimorphism followed by a monomorphism.
(Hilton and Stammbach [1, p. 78].)

The following are all abelian categories.
Example 1.0.1. b, the category of abelian groups.

Example 1.0.2. 9iod(A4), the category of modules over a ring 4 (commutative
with identity as always).

Example 1.0.3. Ab(X), the category of sheaves of abelian groups on a
topological space X.

Example 1.0.4. Mod(X ), the category of sheaves of ¢’y-modules on a ringed
space (X,( y).

Example 1.0.5. Gco(X), the category of quasi-coherent sheaves of (x-
modules on a scheme X (11, 5.7).

Example 1.0.6. €ol( X ), the category of coherent sheaves of (/,-modules on
a noetherian scheme X (I, 5.7).
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|  Derived Functors

Example 1.0.7. €oly(X), the category of coherent sheaves of (‘,-modules on
q noetherian formal scheme (X,¢) (11, 9.9).

In the rest of this section, we will be stating some basic results of homo-
logical algebra in the context of an arbitrary abelian category. However, in
most books, these results are proved only for the category of modules over
a riug, and proofs are often done by “diagram-chasing™: you pick an element
and chase its images and pre-images through a diagram. Since diagram-
chasing doesn’t make sense in an arbitrary abelian category, the conscientious
reader may be disturbed. There are at least three ways to handle this difficulty.
(1) Provide intrinsic proofs for all the results, starting from the axioms of an
abelian category, and without even mentioning an element. This is cumber-
some, but can be done—see, e.g., Freyd [1]. Or (2), note that in each of the
categories we use (most of which are in the above list of examples), one can
in fact carry out proofs by diagram-chasing. Or (3), accept the “full embed-
ding theorem™ (Freyd [1, Ch. 7]), which states roughly that any abelian
category is equivalent to a subcategory of 2b. This implies that any category-
theoretic statement (e.g., the 5-lemma) which can be proved in b (e.g., by
diagram-chasing) also holds in any abelian category.

Now we begin our review of homological algebra. A complex A" in an
abelian category 2 is a collection of objects A', i€ Z, and morphisms
d':A" - A" such that d'*! . d' = 0 for all i. If the objects A’ are specified
only in a certain range, e.g., i > 0, then we set A' = 0 for all other i. A
morphism of complexes, f:A" — B is a set of morphisms f': 4 - B’ for
each i, which commute with the coboundary maps d'.

The ith cohomology object hi(A’) of the complex A" is defined to be
kerd'/imd'~'. If f:A" - B’ is a morphism of complexes, then [ induces a
natural map h'(f):hi(4’) - h'(B). If 0 - A - B - C -0 is a short
exact sequence of complexes, then there are natural maps 6°:h'(C’) —» h'*1(4’)
giving rise to a long exact sequence

S hi(A) = H(B) = H(C) S A > ...

Two morphisms of complexes f,g: 4 — B are homotopic (written f ~ ¢)
if there is a collection of morphisms k': 4* - B~ ! for each i (which need
not commute with the d*) such that /' — g = dk + kd. The collection of mor-
phisms, k = (k) is called a homotopy operator. 1f f ~ ¢, then f and g induce
the saume morphism hi(4) — Ii(B’) on the cohomology objects. for each i.

A covariant functor F:2 — B from one abelian category to another is
additive if for any two objects 4,4’ in ¥, the induced map Hom(4,4') >
Hom(F A,F A’) is a homomorphism of abelian groups. F is left exact if it is
additive and for every short exact sequence

0-A4A>4->5A4" -0
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IIT  Cohomology

in A, the sequence
0> FA - FA - FA”

is exact in B. If we can write a 0 on the right instead of the left, we say F is
right exact. If it is both left and right exact, we say it is exact. If only the
middle part FA" - FA — FA" is exact, we say F is exact in the middle.

For a contravariant functor we make analogous definitions. For example,
F:A — Bis left exact if it is additive, and for every short exact sequence as
above, the sequence

0> FA" > FA > FA
is exact in B.

Example 1.0.8. If 2 is an abelian category, and A is a fixed object, then the
functor B - Hom(A4,B), usually denoted Hom(A4,-), is a covariant left exact
functor from A to WAb. The functor Hom(-,A4) is a contravariant left exact
functor from 2 to 2Ub.

Next we come to resolutions and derived functors. An object I of U is
injective if the functor Hom(-,I) is exact. An injective resolution of an object
A of A is a complex I', defined in degrees i > 0, together with a morphism
g:A — I° such that I' is an injective object of A for each i > 0, and such
that the sequence

04510515 .
1s exact.

If every object of 2 is isomorphic to a subobject of an injective object of
AU, then we say U has enough injectives. If A has enough injectives, then every
object has an injective resolution. Furthermore, a well-known lemma states
that any two injective resolutions are homotopy equivalent.

Now let 2 be an abelian category with enough injectives, and let F: 2 — B
be a covariant left exact functor. Then we construct the right derived functors
RF,i > 0, of F as follows. For each object A4 of 2, choose once and for ail
an injective resolution I of A. Then we define R'F(A) = h'(F(I')).

Theorem 1.1A. Let U be an abelian category with enough injectives, and let
F:U - B be a covariant left exact functor to another abelian category B.
Then

(a) For each i = 0, R'F us defined above is an additive functor from U
to B. Furthermore, it is independent (up to natural isomorphism of functors)
of the choices of injective resolutions made.

(b) There is a natural isomorphism F =~ R°F.

(c) For euch short exact sequence 0 - A" — A — A" — 0 and for euch
i > 0 there is a natural morphism 6:R'F(A”) — R'"YF(A"), such that we
obtain u long exact sequence

.= RIF(A) — R'F(A) » RIF(A") 5 RIF1F(A4') > RIVIF(A) > . .. .
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1 Derived Functors

(d) Given a morphism of the exact sequence of (c) to another 0 - B’ —
B — B” — 0, the §’s give u commutative diagram
RF(A") 5 RI*TF(A))
XA . \
R'F(B") S R'TIF(B).

(€) For each injective object I of U, and for each i > 0, we have
RF(I) = 0.

Definition. With F:2l — B as in the theorem, an object J of U is acyclic for
Fif R'F(J) = Oforalli > 0.

Proposition 1.2A. With F:U — B as in (1.1A), suppose there is un exuct
sequence

0-4-J0sJ 5 ..

where each J' is acyclic for F,i > 0. (We say J' is an F-acyclic resolution

of A.) Then for each i = 0 there is a natural isomorphism R'F(A) =

h(F(J)).

We leave to the reader the analogous definitions of projective objects,
projective resolutions, an abelian category having enough projectives, and
the left derived functors of a covariant right exact functor. Also, the right
derived functors of a left exact contravariant functor (use projective resolu-
tions) and the left derived functors of a right exact contravariant functor
(use injective resolutions).

Next we will give a universal property of derived functors. For this
purpose, we generalize slightly with the following definition.

Definition. Let 2 and B be abelian categories. A (covariant) d-functor from
A to B is a collection of functors T = (T'); o, together with a morphism
8':TY(A") - T'*1(A4’) for each short exact sequence 0 » A' > A - A" -0,
and each i > 0, such that:

(1) For each short exact sequence as above, there 1s a long exact sequence

0

0 - To%A) - T%A) > TYA") S THA)Y > . ..
.—>Ti(A)—>Ti(A”)iTi+1(A,)—>Ti+1(A)—>...;
(2) for each morphism of one short exact sequence (as above) into another
0 - B - B - B’ - 0, the d’'s give a commutative diagram
TiA") S T (4)
R’ . !
T{(B") -> T'*Y(B).

Definition. The é-functor T = (T'): U — B is said to be universal if, given
any other d-functor T' = (T"): A — B, and given any morphism of
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I[IT Cohomology

functors f%:T° — T'°, there exists a unique sequence of morphisms
fi:T" - T' for each i > 0, starting with the given f°, which commute
with the ¢ for each short exact sequence.

Remark 1.2.1. If F: A — B is a covariant additive functor, then by definition
there can exist at most one (up to unique isomorphism) universal o-functor
T with T° = F. If T exists, the T* are sometimes called the right satellite
functors of F.

Definition. An additive functor F:2U — B is effaceable if for each object A
of A, there is a monomorphism u: 4 — M, for some M, such that F(u) =
0. It is coeffuceable if for each A there exists an epimorphism u:P — A
such that F(u) = 0.

Theorem 1.3A. Let T = (T');5, be a covariant §-functor from W to B. If
T' is effaceable for each i > 0, then T is universal.

ProoOF. Grothendieck [1, 11, 2.2.1]

Corollary 1.4. Assume that U has enough injectives. Then for any left exuct
functor F: 0 — B, the derived functors (R'F);s o form a universal §-functor
with F = R°F. Conversely, if T = (T");>, is any universal o-functor,
then TO is left exact, and the T® are isomorphic to R'T® for each i > 0.

PROOF. If F is a left exact functor, then the (R'F);5, form a dé-functor by
(1.1A). Furthermore, for any object A, let u:4 — I be a monomorphism of
A into an injective. Then R'F(I) = 0 for i > 0 by (1.1A), so R'F(u) = 0.
Thus R'F is effaceable for each i > 0. It follows from the theorem that
(R'F) is universal.

On the other hand, given a universal d-functor T, we have T° left exact
by the definition of d-functor. Since A has enough injectives, the derived
functors R'T® exist. We have just seen that (R'T°) is another universal
s-functor. Since R°T° = T°, we find R'T® =~ T for each i, by (1.2.1).

2 Cohomology of Sheaves

In this section we define cohomology of sheaves by taking the derived
functors of the global section functor. Then as an application of general
techniques of cohomology we prove Grothendieck’s theorem about the
vanishing of cohomology on a noetherian topological space. To begin with.
we must verify that the categories we use have enough injectives.

Proposition 2.1A. If A is a ring, then every A-module is isomorphic to a sub-
module of an injective A-module.

PrOOF. Godement [ 1, I, 1.2.2] or Hilton and Stammbach [1, I, 8.3].
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2 Cohomology of Sheaves

Proposition 2.2. Let (X,0y) be a ringed space. Then the category 9od(X)
of sheaves of ( y-modules has enough injectives.

PROOF. Let .# be a sheaf of (“y-modules. For each point x € X, the stalk
F.1s an ( , y-module. Therefore there is an injection .#, — I, where I, is
an injective (' X—module (2 1A). For each point x, let j denote the inclusion
of the one-point space {x] into X, and consider the sheaf .# = []..x j.(I,).
Here we consider I, as a sheaf on the one-point space x|, and j, is the
direct image functor (II, §1).

Now for any sheaf ¥ of (y-modules, we have Hom, (4.¥) =
n Hom,, (%,j,(1,)) by definition of the direct product. On the other hand,
for each point x € X, we have Hom, (%,/,(/,)) = Hom,__(¥,.1,) as one
sees easily. Thus we conclude first that there is a natural morphism of
sheaves of Oxy-modules # — .# obtained from the local maps &, — I,. It
is clearly injective. Second, the functor Hom, (-,#) is the direct product
over all xe X of the stalk functor ¥+— %, which is exact, followed by
Hom,_(.I,), which is exact, since I, is an injective (', y-module. Hence
Hom(-,.#) is an exact functor, and therefore .# is an injective € y-module.

Corollary 2.3. If X is any topological space, then the category WUb(X) of
sheaves of abelian groups on X has enough injectives.

PRrROOF. Indeed, if we let €, be the constant sheaf of rings Z, then (X,(y) is
a ringed space, and Mod(X) = Ab(X).

Definition. Let X be a topological space. Let I'(X,*) be the global section
functor from Ab(X) to Ab. We define the cohomology functors H'(X,")
to be the right derived functors of I'(X,-). For any sheaf .#, the groups
H{(X,#) are the cohomology groups of #. Note that even if X and %
have some additional structure, e.g., X a scheme and % a quasi-coherent
sheaf, we always take cohomology in this sense, regarding # simply as
a sheaf of abelian groups on the underlying topological space X.

We let the reader write out the long exact sequences which follow from
the general properties of derived functors (1.1A).

Recall (I1, Ex. 1.16) that a sheaf # on a topological space X is flusque if
_fOr every inclusion of open sets V' < U, the restriction map #(U) - F(V)
Is surjective.

Lemma 2.4. If (X,( ) is a ringed space, any injective € y-module is flusque.

PROOF. For any open subset U <= X, let (. denote the sheaf /. (¢ x|y), which
is the restriction of (' to U, extended by zero outside U (11, Ex. 1.19). Now
let .# be an injective ¢ -module and let V < U be open sets. Then we
have an inclusion 0 — @V — (U of sheaves of ( y-modules. Since .# is injec-
tive, we get a surjection Hom(('y,.#) -» Hom(C,.# ) — 0. But Hom(C',.¥) =
4(U)and Hom(0,,,.#) = F(V), so .# is flasque.
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111  Cohomology

Proposition 2.5. If # is a flusque sheaf on a topological spuce X, then
H{(X,#) =0 foralli > 0.

ProOOF. Embed # in an injective object .# of Ab(X) and let & be the quotient:
0> #F > 9 ->9%->0.

Then Z is flasque by hypothesis, .# is flasque by (2.4), and so ¥ is flasque
by (II, Ex. 1.16c). Now since F is flasque, we have an exact sequence
(11, Ex. 1.16b)

0-IX,7)->T(X,%)->T(X,%) — 0.

On the other hand, since .# is injective, we have H(X,.#) = 0 for i > 0
(1.1Ae). Thus from the long exact sequence of cohomology, we get
HNX,#) =0 and H(X,#) =~ H~YX,%9) for each i > 2. But ¥ is also
flasque, so by induction on i we get the result.

Remark 2.5.1. This result tells us that flasque sheaves are acyclic for the
functor I'(X,"). Hence we can calculate cohomology using flasque resolu-
tions (1.2A). In particular, we have the following result.

Proposition 2.6. Let (X,0y) be a ringed space. Then the derived functors of
the functor I'(X,") from Mod(X) to WUb coincide with the cohomology
functors H(X,").

Proor. Considering I'(X,) as a functor from 9od(X) to Ab, we calculate
its derived functors by taking injective resolutions in the category Miod(X).
But any injective is flasque (2.4), and flasques are acyclic (2.5) so this resolu-
tion gives the usual cohomology functors (1.2A).

Remark 2.6.1. Let (X,(y) be a ringed space, and let 4 = I'(X,0y). Then
for any sheaf of ¢ y-modules #, I'(X,# ) has a natural structure of A-module.
In particular, since we can calculate cohomology using resolutions in the
category Mod(X), all the cohomology groups of F have a natural structure
of A-module; the associated exact sequences are sequences of A-modules.
and so forth. Thus for example, if X is a scheme over Spec B for some ring
B, the cohomology groups of any ¢’y-module # have a natural structure of
B-module.

A Vanishing Theorem of Grothendieck

Theorem 2.7 (Grothendieck [1]). Let X be a noetherian topological space of
dimension n. Then for all i > n and all sheaves of abelian groups F on
X, we have H(X,7) = 0.

Before proving the theorem, we need some preliminary results, mainly
concerning direct limits. If (#,) is a direct system of sheaves on X, indexed

by a directed set A, then we have defined the direct limit lim %, (11, Ex. 1.10).
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2 Cohomology of Sheaves

Lemma 2.8. On a noetherian topological space, a direct limit of flusque
sheaves is flusque.

ProOOF. Let (#,) be a directed system of flasque sheaves. Then for any
inclusion of open sets VV < U, and for each a, we have #,(U)— Z, (V) is
surjective. Since lim is an exact functor, we get

lim 7,(U) - lim (V)

is also surjective. But on a noetherian topological space, li_m)gf*a(U ) =
(im #,)(U) for any open set (II, Ex. 1.11). So we have

(lim F )(U) - (lim Z,)(V)

is surjective, and so lim 7, is flasque.

Proposition 2.9. Let X be a noetherian topological space, and let (F,) be a
direct system of abelian sheaves. Then there are natural isomorphisms,
for eachi>= 0

hmH(X )—»H(Xhm/ ).

ProoOF. For each o we have a natural map #, — lim .#,. This induces a
map on cohomology, and then we take the direct limit of these maps. For
i = 0, the result is already known (I, Ex. 1.11). For the general case, we
consider the category ind,(2Ub(X)) consisting of all directed systems of
objects of AUb(X), indexed by 4. This is an abelian category. Furthermore,
since 1_1r_q is an exact functor, we have a natural transformation of d-functors

lim H'(X,") > H(X.lim )

from md,(Ab(X)) to Ub. They agree for i = 0, so to prove they are the
same, it will be sufficient to show they are both effaceable for i > 0. For
in that case, they are both universal by (1.3A), and so must be isomorphic.

So let (#,) € ind(Ab(X)). For each «, let ¥, be the sheaf of discon-
tinuous sections of %, (II, Ex. 1.16e). Then %, is flasque, and there is a
natural inclusion .#, — %,. Furthermore, the construction of %, is func-
torial, so the %4, also form a direct system, and we obtain a monomorphism
u:(#,) = (%,) in the category ind ,(Ab(X )). Now the %, are all flasque, so
H(X,%,) = 0 for i > 0 (2.5). Thus lim H' '(X,%,) = 0, and the functor on
the left-hand side is effaceable for i > 0. On the other hand, lim ¢, is also
flasque by (2.8). So H'(X. lim%,) = 0 fori > 0, and we see that the functor
on the right-hand side is also effaceable. This completes the proof.

Remark 2.9.1. As a special case we see that cohomology commutes with
infinite direct sums.

Lemma 2.10. Ler Y be a closed subset of X, let F be a sheaf of abelian
groups on ) Y,and let j:Y — X be the inclusion. Then H(Y,7) = H'(X,j, %),
where j, F is the extension of # by zero outside Y (11, Ex. 1.19).
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II1 Cohomology

ProOF. If ¢ is a flasque resolution of # on Y. then j_ ¢ is a flasque res-
olution of j,.# on X, and for each i, I'(Y,¢') =T'(X.j,.#'). So we get the
same cohomology groups.

Remark 2.10.1. Continuing our earlier abuse of notation (II, Ex. 1.19), we
often write .# instead of j, #. This lemma shows there will be no ambiguity
about the cohomology groups.

PROOF OF (2.7). First we fix some notation. If Y is a closed subset of X,
then for any sheaf # on X we let #y = j (Z|y), where j:Y — X is the
inclusion. If U is an open subset of X, we let 7, = i(F|,), where i:U —
X is the inclusion. In particular, if U = X — Y, we have an exact sequence
(I, Ex. 1.19)

0-F,>F ->Fy—-0.

We will prove the theorem by induction on n = dim X, in several steps.

Step 1. Reduction to the case X irreducible. If X is reducible, let Y be
one of its irreducible components, and let U = X — Y. Then for any %
we have an exact sequence

O0-F,>F - F,-0.

From the long exact sequence of cohomology, it will be sufficient to prove
that H(X,%y) = 0 and H(X,#,) = 0 for i > n. But Y is closed and
irreducible, and % can be regarded as a sheaf on the closed subset U,
which has one fewer irreducible components than X. Thus using (2.10) and
induction on the number of irreducible components, we reduce to the case
X irreducible.

Step . Suppose X is irreducible of dimension 0. Then the only open
subsets of X are X and the empty set. For otherwise, X would have a
proper irreducible closed subset, and dim X would be > 1. Thus I'(X,")
induces an equivalence of categories Ab(X) — Ab. In particular, I'(X,")
is an exact functor, so H'(X,#) = Ofori > 0, and for all 7.

Step 3. Now let X be irreducible of dimension n, and let .# € Ab(X).
Let B={J.cy Z(U), and let 4 be the set of all finite subsets of B. For
each x € A, let #, be the subsheaf of % generated by the sections in « (over
various open sets). Then A is a directed set, and # = lim .%,. So by (2.9),
it will be sufficient to prove vanishing of cohomology for each #,. If &
1s a subset of «, then we have an exact sequence

0%, > F, 59 -0,

A

where % is a sheaf generated by #(x — «') sections over suitable open sets.
Thus, using the long exact sequence of cohomology, and induction on
#(x), we reduce to the case that F is generated by a single section over
some open set U. In that case & is a quotient of the sheaf Z, (where Z
denotes the constant sheaf Z on X). Letting # be the kernel, we have an

exact sequence
O0->R->2Zy - % - 0.
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2  Cohomology of Sheaves

Again using the long exact sequence of cohomology, it will be sufficient to
prove vanishing for # and for Z,.

Step 4. Let U be an open subset of X and let # be a subsheaf of Z,.
For each xe U, the stalk £, is a subgroup of Z. If # =0, skip to Step 5.
If not, let d be the least positive integer which occurs in any of the groups #,.
Then there is a nonempty open subset V' < U such that #|, ~d-Z|, as a
subsheaf of Z|,,. Thus #, =~ Z, and we have an exact sequence

02y, >R > R/Z, - 0.

Now the sheaf #/Z, is supported on the closed subset (U — V)~ of X,
which has dimension <n, since X is irreducible. So using (2.10) and the
induction hypothesis, we know H'(X,#/Z,) = 0 for i = n. So by the
long exact sequence of cohomology, we need only show vanishing for Z,.

Step 5. To complete the proof, we need only show that for any open
subset U < X, we have H(X,Z;) = Ofori > n. Let Y = X — U. Then
we have an exact sequence

0-Z,>Z->17Z,-0.

Now dim Y < dim X since X is irreducible, so using (2.10) and the in-
duction hypothesis, we have H(X,Zy,) = 0 for i = n. On the other hand,
Z is flasque, since it is a constant sheaf on an irreducible space (I1, Ex. 1.16a).
Hence H'(X,Z) = 0 for i > 0 by (2.5). So from the long exact sequence
of cohomology we have H(X,Z,) = 0 for i > n. q.e.d.

Historical Note: The derived functor cohomology which we defined in
this section was introduced by Grothendieck [1]. It is the theory which is
used in [EGA]. The use of sheaf cohomology in algebraic geometry started
with Serre [3]. In that paper, and in the later paper [4], Serre used Cech
cohomology for coherent sheaves on an algebraic variety with its Zariski
topology. The equivalence of this theory with the derived functor theory
follows from the “theorem of Leray” (Ex. 4.11). The same argument, using
Cartan’s “Theorem B” shows that the Cech cohomology of a coherent
analytic sheaf on a complex analytic space is equal to the derived functor
cohomology. Gunning and Rossi [1] use a cohomology theory computed
by fine resolutions of a sheaf on a paracompact Hausdorff space. The
e€quivalence of this theory with ours is shown by Godement [1, Thm. 4.7.1,
p. 181 and Ex. 7.2.1, p. 263], who shows at the same time that both theories
coincide with his theory which is defined by a canonical flasque resolution.
Godement also shows [1, Thm. 5.10.1, p. 228] that on a paracompact
HausdorfT space, his theory coincides with Cech cohomology. This provides
a bridge to the standard topological theories with constant coefficients, as
developed in the book of Spanier [1]. He shows that on a paracompact
Hausdorff space, Cech cohomology and Alexander cohomology and singular
cohomology all agree (see Spanier [ 1, pp. 314, 327, 334]).
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I Cohomology

The vanishing theorem (2.7) was proved by Serre [ 3] for coherent sheaves
on algebraic curves and projective algebraic varieties, and later [S] for
abstract algebraic varieties. It is analogous to the theorem that singular
cohomology on a (real) manifold of dimension n vanishes in degrees i > n.

EXERCISES

2.1. (a) Let X = A, be the affine line over an infinite field k. Let P.Q be distinct closed
points of X, and let U = X — |P.Q!. Show that H(X.Z,;) # 0.
*(b) More generally, let Y < X = A} be the union of n + 1 hyperplanes in suit-
ably general position, and let U = X — Y. Show that H"(X,Z) # 0. Thus the
result of (2.7) is the best possible.

2.2. Let X = P} be the projective line over an algebraically closed field k. Show that
the exact sequence 0 - ( — # — # ( — 0 of (11, Ex. 1.21d) is a flasque res-
olution of ¢. Conclude from (11, Ex. 1.21e) that H'(X,() = Oforalli > 0.

2.3. Cohomology with Supports (Grothendieck [7]). Let X be a topological space, let
Y be a closed subset, and let .# be a sheaf of abelian groups. Let I'y(X,.# ) denote
the group of sections of .# with support in Y (11, Ex. 1.20).

{a) Show that I',(X,-) is a left exact functor from LX) to Ab.
We denote the right derived functors of I'y(X,-) by Hy(X, ). They are the
cohomology groups of X with supports in Y, and coefficients in a given sheaf.
(b) f 0> 7' - 7 - F”" -0 is an exact sequence of sheaves, with .7 flasque,
show that
O0-T X, F)>T (X, F)>TyX,F')-0
is exact.
{c) Show that if # is flasque, then H,(X,#) = O for all i > 0.
(d) If # is flasque, show that the sequence

0~ TyX,7)>» (X F)>T(X - Y,7)>0
is exact.
(e) Let U = X — Y. Show that for any .#, there is a long exact sequence of
cohomology groups

0 —» HY(X.#) - HYX.#) > HYU.Z|,) -
- HY(X,7) > H\(X,#) > H'(U,Z7|,) -

(f) Excision. Let V be an open subset of X containing Y. Then there are natural
functorial isomorphisms, for all i and .7,

HY(X.7) = Hy(V.7,).

2.4. Maver Vietoris Sequence. Let Y)Y, be two closed subsets of X. Then there 15 &
long exact sequence of cohomology with supports

- fl"l n YZ(X"?) - H')1(X,77) @ H,)J(X,?) - H()I U},Z(X”y'?} —
- HY L (X F) >
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3 Cohomology of a Noetherian Affine Scheme

2.5. Let X be a Zariski space (II, Ex. 3.17). Let P e X be a closed point, and let Xp
be the subset of X consisting of all points Q € X such that Pe {Q} . Wecall X,
the local space of X at P, and give it the induced topology. Let j: X, — X be the
inclusion, and for any sheaf # on X, let #, = j*#%. Show that for all i, #, we
have

Hy(X ,F) = Hp(X p, 7).

2.6. Let X be a noetherian topological space, and let {.#,},., be a direct system of
injective sheaves of abelian groups on X. Then lim 7, is also injective. [Hints:
First show that a sheaf .# is injective if and only if for every open set U = X, and
for every subsheaf # = Z, and for every map f:# — .4, there exists an ex-
tension of f to a map of Z;, — .#. Secondly, show that any such sheaf # is finitely
generated. so any map # — lim .7, factors through one of the .#,.]

2.7. Let S! be the circle (with its usual topology), and let Z be the constant sheaf Z.
(a) Show that H'(S',Z) = Z, using our definition of cohomology.
(b) Now let # be the sheaf of germs of continuous real-valued functions on S*.
Show that H(S*,%) = 0.

3 Cohomology of a Noetherian Affine Scheme

In this section we will prove that if X = Spec A is a noetherian affine
scheme, then H{(X,#) = 0 for all i > 0 and all quasi-coherent sheaves .# of
¢ y-modules. The key point is to show that if I is an injective A-module,
then the sheaf I on Spec A4 is flasque. We begin with some algebraic
preliminaries.

Proposition 3.1A (Krull’s Theorem). Let A be a noetherian ring, let M = N
be finitely generated A-modules, and let a be an ideal of A. Then the
a-adic topology on M is induced by the a-adic topology on N. In particular,
for any n > 0, there exists an n' = n such that a"M 2 M N a” N.

ProOF. Atiyah-Macdonald [1, 10.11] or Zariski-Samuel [ 1, vol. II, Ch. VIII,

Th. 4].

Recall (II, Ex. 5.6) that for any ring A, and any ideal a < A4, and any
A-module M, we have defined the submodule I',(M) to be {m € M|a"m = 0
for some n > 0}.

Lemma 3.2. Let A be a noetherian ring, let a be an ideal of A, and let I be an

injective A-module. Then the submodule J = I',(I) is also an injective
A-module.

ProoF. To show that J is injective, it will be sufficient to show that for any
ideal b < 4, and for any homomorphism ¢:b — J, there exists a homo-
morphism : 4 — J extending ¢. (This is a well-known criterion for an
injective module—Godement [ 1, I, 1.4.1]). Since A is noetherian, b is finitely
generated. On the other hand, every element of J is annihilated by some

213



IIT Cohomology

power of a, so there exists an n > 0 such that a"¢(b) = 0, or equivalently,
¢(a"b) = 0. Now applying (3.1A) to the inclusion b < A, we find that there
is an n" = n such that a"b 2 b n a”. Hence ¢(b n a") = 0, and so the
map ¢:b — J factors through b/(b n a”). Now we consider the following
diagram:

; -
- -
~ ~—— ’
~ -
-
~o - Y
~ ~—
~ ~—
~ \\
- -
\\ \\

b/(b N a™) > J B

@

Since [ is injective, the composed map of b/(b n a™) to I extends to a map
Y':A/a" — I. But the image of Y/ is annihilated by a", so it is contained in
J. Composing with the natural map A — A4/a", we obtain the required map
Y:A — J extending ¢.

Lemma 3.3. Let I be an injective module over a noetherian ring A. Then for
any f € A, the natural map of 1 to its localization I is surjective.

PrOOF. For each i > 0, let b; be the annihilator of f'in A. Thenb, < b, =

., and since A is noetherian, there is an r such thatb, = b,,, = ... . Now
let 6:1 — I, be the natural map, and let x € I be any element. Then by
definition of localization, there is a y € I and an n > 0 such that x = 6(y)/f".
We define a map ¢ from the ideal (f"*") of 4 to I by sending f"*" to f"y.
This is possible, because the annihilator of f"*"is b,., = b,, and b, anni-
hilates f"y. Since I is injective, ¢ extends to a map y: A — I. Let (1) = =
Then f"*"z = f'y. But this implies that 6(z) = 6(y)/f" = x. Hence 0 is
surjective.

Proposition 3.4. Let I be an injective module over a noetherian ring A. Then
the sheaf I on X = Spec A is flasque.

PrOOF. We will use noetherian induction on Y = (Supp I)~. See (II, Ex.
1.14) for the notion of support. If Y consists of a single closed point of X,
then I is a skyscraper sheaf (II, Ex. 1.17) which is obviously flasque.

In the general case, to show that I is flasque, it will be sufficient to show,
for any open set U < X, that I'(X, I) - I'(U,]) is surjective. If Y AU = &,
there is nothing to prove. If Y n U # J, we can find an f € 4 such that
the open set X ; = D(f) (I, §2) is contained in U and X, n Y # (. Let
Z = X — X/, and consider the following diagram:

rx,;y— rw,l - rx,I)
N) N)
FZ(X’T) - FZ(Uai)a
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3 Cohomology of a Noetherian Affine Scheme

where I'; denotes sections with support in Z (11, Ex. 1.20). Now given a
section s e I'(U, 1) we consider its image s’ in F(Xf, ). But F(Xf,I) =1
(I1, 5.1), so by (3.3), there isatel =TI'(X, I) restrlctmg to s'. Let ¢’ be the
restriction of t to I'(U, I) Then s — t' goes to 0 in F(Xf,I) so it has support
in Z. Thus to complete the proof, it will be sufficient to show that I' (X, -
I',(U, 1) 1S surjectlve

Let J = I'y(X,I). If a is the ideal generated by f, then J = r.(I) (11,
Ex. 5.6), so by (3.2), J is also an injective 4-module. Furthermore, the
support of J is contained in Y n Z, which is strictly smaller than Y. Hence
by our induction hypothesis, J is flasque. Since I'(U, J) = r,UJ) (1,
Ex. 5.6), we conclude that FZ(X,T) — FZ(U,I) is surjective, as required.

Theorem 3.5. Let X = Spec A be the spectrum of a noetherian ring A. Then
for all quasi-coherent sheaves & on X, and for all i > 0, we have
H(X,7) = 0.

Proor. Given #, let M = I'(X,#), and take an injective resolution 0 —
M — I' of M in the category of A-modules. Then we obtain an exact
sequence of sheaves 0 — M- TonX NowZ# =M (11, 5.5) and each I’
is flasque by (3.4), so we can use this resolution of .# to calculate cohomology
(2.5.1). Applying the functor I', we recover the exact sequence of A-modules
0 - M — I'. Hence HY(X,#) = M, and H(X,#) = Ofori > 0.

Remark 3.5.1.This result is also true without the noetherian hypothesis, but
the proof is more difficult [EGA III, 1.3.1].

Corollary 3.6. Let X be a noetherian scheme, and let F be a quasi-coherent
sheaf on X. Then F can be embedded in a flusque, quasi-coherent sheaf .

Proor. Cover X with a finite number of open affines U; = Spec 4., and let
e, = = M, for each i. Embed M, in an injective A, module I;. For each i,
let f:U; > X be the inclusion, and let ¥ = (D f,(I). For each i we have
an injective map of sheaves /lb - I Hence we obtam amap ¥ — f*(f,-).
Taking the direct sum over i gives a map .# — % which is clearly injective.
On the other hand, for each i, I, is flasque (3.4) and quasi-coherent on U,.
Hence f,(I,) is also flasque (11, Ex 1.16d) and quasi-coherent (11, 5.8). Takmg
the direct sum of these, we see that % is flasque and quasi-coherent.

Theorem 3.7 (Serre [5]). Let X be a noetherian scheme. Then the following
conditions ure equiralent:
(1) X is affine:
(1) HY(X,#) = 0 for all F quasi-coherent and all i > 0:
(i) HY(X,7) = 0 for ull coherent sheaves of ideuls .5 .

PROOF. (i) = (ii) is (3.5). (ii) = (iii) is trivial, so we have only to prove
(1if) = (i). We use the criterion of (II, Ex. 2.17). First we show that X can
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111  Cohomology

be covered by open affine subsets of the form X, with fe 4 = I'(X,().
Let P be a closed point of X, let U be an open affine neighborhood of P,
and let Y = X — U. Then we have an exact sequence

00— ']Yviﬂ - jY — k(P) - 0,

where .# and Jy_p, are the ideal sheaves of the closed sets Y and Y U | P|,
respectively. The quotient is the skyscraper sheaf A(P) = ¢, m, at P. Now
from the exact sequence of cohomology, and hypothesis (ii1), we get an
exact sequence

[(X.%y) » [(XkP)) » H(X, Iy p) = 0.

So there is an element f e I'(X,#,) which goes to 1 in k(P), i.e, fp = 1
(mod myp). Since ., < (4, we can consider f as an element of 4. Then by
construction, we have Pe X, < U. Furthermore, X, = Uy, where fis
the image of f in I'(U,0y), so X, is affine.

Thus every closed point of X has an open affine neighborhood of the
form X, By quasi-compactness, we can cover X with a finite number of
these, corresponding to f, ... .f, € A.

Now by (II, Ex. 2.17), to show that X is affine, we need only verify that
f1, .. ..f, generate the unit ideal in 4. We use fi,...,f, to define a map
x:(% — Uy by sending (ay, ... ,» to Y fua;. Since the X, cover X, this is
a surjective map of sheaves. Let 7 be the kernel:

0> F - 0y > Cy—0.
We filter # as follows:
F=Fnlyh2Fnly'2...2.7nC0

for a suitable ordering of the factors of (. Each of the quotients of this
filtration is a coherent sheaf of ideals in € y. Thus using our hypothesis (iii)
and the long exact sequence of cohomology, we climb up the filtration and
deduce that H'(X,#) = 0. But then I'(X,0%) > I'(X.,Cy) is surjective.
which tells us that f}, . . .,f, generate the unit ideal in A. g.ed.

Remark 3.7.1. This result is analogous to another theorem of Serre in
complex analytic geometry, which characterizes Stein spaces by the vanishing
of coherent analytic sheaf cohomology.

EXERCISES

3.1. Let X be a noetherian scheme. Show that X is affine if and only if X', (Il Ex. 2.3)
is affine. [Hint: Use (3.7), and for any coherent sheaf # on X, consider the filtra-
tion.# 2.4 - # 2 +2-.F 2 ..., where .4 is the sheaf of nilpotent elements
on X.]

3.2. Let X be a reduced noetherian scheme. Show that X is affine if and only if each
irreducible component is affine.
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3.3.

34.

3.5.

3.6.

3.7.

3 Cohomology of a Noetherian Affine Scheme

Let A4 be a noetherian ring, and let a be an ideal of 4.

(a) Showthat I, (-)(11, Ex.5.6)isa left-exact functor from the category of A-modules
to itself. We denote its right derived functors, calculated in Ytod(A), by H.(-).

(b) Now let X = Spec 4, Y = V(a). Show that for any 4-module M,

Hi(M) = HYy(X,M),

where Hi(X,-) denotes cohomology with supports in Y (Ex. 2.3).
(c) For any i, show that I, (H}(M)) = H,(M).

Cohomological Interpretation of Depth. If A is a ring, a an ideal, and M an A4-
module, then depth, M is the maximum length of an M-regular sequence x, ... ,x,,
with all x, € a. This generalizes the notion of depth introduced in (11, §8).

(a) Assume that A4 is noetherian. Show that if depth, M > 1, then I, (M) = 0,
and the converse is true if M is finitely generated. [Hint: When M is finitely
generated, both conditions are equivalent to saying that a is not contained in
any associated prime of M.]

(b) Show inductively, for M finitely generated, that for any n > 0, the following
conditions are equivalent:

(i) depth, M > n;
(it) H\(M) = 0foralli < n.

For more details, and related results, see Grothendieck [7].

Let X be a noetherian scheme, and let P be a closed point of X. Show that the
following conditions are equivalent:

(i) depth (p = 2;
(i) if U is any open neighborhood of P, then every section of "y over U — P
extends uniquely to a section of " over U.

This generalizes (I, Ex. 3.20), in view of (I, 8.22A).

Let X be a noetherian scheme.

(a) Show that the sheaf & constructed in the proof of (3.6) is an injective object in
the category Qco(X) of quasi-coherent sheaves on X. Thus Q¢o(X) has enough
injectives.

*(b) Show that any injective object of Qeo(X) is flasque. [Hints: The method of
proof of (2.4) will not work, because ('}, is not quasi-coherent on X in general.
Instead, use (11, Ex. 5.15) to show that if # € Qco(X) is injective, and iIf U < X
is an open subset, then .#|; is an injective object of Qeo(U). Then cover X
with open affines . . .]

(¢} Conclude that one can compute cohomology as the derived functors of I'(X,-),
considered as a functor from Qceo(X) to Ab.

Let A4 be a noetherian ring, let X = Spec A4, let a < A4 be anideal, and let U < X
be the open set X — V(a).
(a) For any A-module M, establish the following formula of Deligne:

r(UM) = lim Hom,,(a",M).

(b) Apply this in the case of an injective A-module I, to give another proof of (3.4).
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II1 Cohomology

3.8. Without the noetherian hypothesis. (3.3) and (3.4) are false. Let A =k[x,.x{,X5....]
with the relations xjx, = 0forn=1,2,... . Let I be an injective 4-module con-
taining 4. Show that I — I is not surjective.

4 Cech Cohomology

In this section we construct the Cech cohomology groups for a sheaf of
abelian groups on a topological space X, with respect to a given open
covering of X. We will prove that if X is a noetherian separated scheme,
the sheaf is quasi-coherent, and the covering is an open affine covering,
then these Cech cohomology groups coincide with the cohomology groups
defined in §2. The value of this result is that it gives a practical method for
computing cohomology of quasi-coherent sheaves on a scheme.

Let X be a topological space, and let X = (U;),.; be an open covering
of X. Fix, once and for all, a well-ordering of the index set I. For any
finite set of indices iy, ... ,i, € I we denote the intersection U;; n ... N U;,
by U, ..., ip’

Now let % be a sheaf of abelian groups on X. We define a complex
C'(U,F) of abelian groups as follows. For each p > 0, let

cF) = [l F,

aio ..... 1 S f(Ulo ..... ip)’

for each (p + 1)-tuple i, < ... < i, of elements of I. We define the co-
boundary map d:C? — CP*! by setting

p+1

k
(da)lo ..... lp+1 = Z (_1) alo ----- Lhs o v oy lp+l‘Uln Ip <t

k=0
Here the notation i, means omit i,. Then since &, ;. .. .. i, is an ele-
ment of Z(U, . ;. .. .. i,..)» We restrict to U, . ; . to get an element

of #(U,, .. .., One checks easily that d* = 0, so we have indeed de-
fined a complex of abelian groups.

Remark 4.0.1. If « € CP(U, %), it is sometimes convenient to have the symbol

%, ..., defined for all (p + 1)-tuples of elements of I. If there is a re-
peated index in the set {iy,...,i,}, we define o;  , = 0. If the indices
are all distinct, we define o, ; = (=1)"0y, . Where g is the per-
mutation for which oi, < ... < gi,. With these conventions, one can

check that the formula given above for do remains correct for any (p + 2)-
tuple iy, . .. ,i,,; of elements of I.
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Definition. Let X be a topological space and let U be an open covering of
X. For any sheaf of abelian groups % on X, we define the pth Cech
cohomology group of &, with respect to the covering U, to be

HPUL F) = h?(C (W, F)).

Caution 4.0.2. Keeping X and U fixed, f 0 > %' - % > Z" >0 1s a
short exact sequence of sheaves of abelian groups on X, we do not in general
get a long exact sequence of Cech cohomology groups. In other words,
the functors H?(21,-) do not form a é-functor (§1). For example, if 2 consists
of the single open set X, then this results from the fact that the global section
functor I'(X,-) is not exact.

Example 4.0.3. To illustrate how well suited Cech cohomology is for com-
putations, we will compute some examples. Let X = P/, let # be the sheaf
of differentials Q (II, §8), and let ! be the open covering by the two open
sets U = A'! with affine coordinate x, and V = A! with affine coordinate
v = 1/x. Then the Cech complex has only two terms:

C°=T(U,Q) x I'(V,Q)
C'=Tr(UnVQ).
Now
IU,Q)=k[x]dx

r(vQ) =k[y]dy
1
riuonv) =k [x, —} dx,
X
and the map d:C° — C! is given by

XX

ye=
X

1
dyr— —— dx.
X

So ker d is the set of pairs ¢ f(x)dx,g())dy) such that

1 1
flx)= _x_zg (;)

This can happen only if f = g = 0, since one side is a polynomial in x and
the other side is a polynomial in 1/x with no constant term. So H°U.Q) = 0.
To compute H', note that the image of d is the set of all expressions

1 1
(19+ (1))
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where f and g are polynomials. This gives the subvector space of k[ x,1/x] dx
generated by all x" dx, neZ, n # — 1. Therefore HYU,Q) = k, generated by
the image of x ! dx.

Example 4.0.4. Let S' be the circle (in its usual topology), let Z be the
constant sheaf Z, and let U be the open covering by two connected open
semi-circles U, V, which overlap at each end, so that U n V consists of two
small intervals. Then

C'=IrUZ)xT(VL)=1Z x Z
C!l=Ir(UnViZ)y=1Z x L

and the map d: C° - C! takes (a,b) to <b —a,b —a)d. Thus HOU,Z)=Z
and H'(,Z) = Z. Since we know this is the right answer (Ex. 2.7), this
illustrates the general principle that Cech cohomology agrees with the usual
cohomology provided the open covering is taken fine enough so that there
is no cohomology on any of the open sets (Ex. 4.11).

Now we will study some properties of the Cech cohomology groups.

Lemma 4.1. For any X W,.% as above, we have Ho(u,gf*) >~ I'(X,%).

Proor. H°U, F) = ker(d:CO(U,F) - C' U F)). If aeC® is given by
{o; € #(U;)}, then for each i < j, (da);; = «; — &, So da = 0 says the
sections «; and «; agree on U; n U;. Thus it follows from the sheaf axioms
that ker d = I'(X,%).

Next we define a “sheafified” version of the Cech complex. For any
openset V < X, let f:V — X denote the inclusion map. Now given X, 0, %
as above, we construct a complex ¢ (U,%) of sheaves on X as follows.
For each p > 0, let

(gp(uﬂg:) = H . f;[:(f/-;’U,”~ ' )3

Jdp

to

and define
d: P - ¢rt!

by the same formula as above. Note by construction that for each p we
have ' X, ¢? (N, %)) = CP(U,F).

Lemma 4.2. For any sheaf of abelian groups & on X, the complex € (U, F)
is a resolution of F, ie., there is a natural map &:F — €° such that the
sequence of sheaves

0->F S56EWNF) - G UF)> ...
is exact.
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