Next we observe that D(f) can be covered by a finite number of the $D(h_i)$. Indeed, $D(f) \subseteq \bigcup D(h_i)$ if and only if $V((f)) \supseteq \bigcap V((h_i)) = V(\sum (h_i))$. By (2.1c) again, this is equivalent to saying $f \in \sqrt{\sum (h_i)}$, or $f^n \in \sum (h_i)$ for some n. This means that f^n can be expressed as a *finite* sum $f^n = \sum b_i h_i$, $b_i \in A$. Hence a finite subset of the h_i will do. So from now on we fix a finite set h_1, \ldots, h_r such that $D(f) \subseteq D(h_1) \cup \ldots \cup D(h_r)$.

For the next step, note that on $D(h_i) \cap D(h_j) = D(h_i h_j)$ we have two elements of $A_{h_i h_j}$, namely a_i / h_i and a_j / h_j both of which represent s. Hence, according to the injectivity of ψ proved above, applied to $D(h_i h_j)$, we must have $a_i / h_i = a_j / h_j$ in $A_{h_i h_j}$. Hence for some n,

$$(h_i h_j)^n (h_j a_i - h_i a_j) = 0.$$

Since there are only finitely many indices involved, we may pick n so large that it works for all i, j at once. Rewrite this equation as

$$h_j^{n+1}(h_i^n a_i) - h_i^{n+1}(h_j^n a_j) = 0.$$

Then replace each h_i by h_i^{n+1} , and a_i by $h_i^n a_i$. Then we still have s represented on $D(h_i)$ by a_i/h_i , and furthermore, we have $h_j a_i = h_i a_j$ for all i, j.

Now write $f'' = \sum b_i h_i$ as above, which is possible for some n since the $D(h_i)$ cover D(f). Let $a = \sum b_i a_i$. Then for each j we have

$$h_j a = \sum_i b_i a_i h_j = \sum_i b_i h_i a_j = f^n a_j.$$

This says that $a/f^n = a_j/h_j$ on $D(h_j)$. So $\psi(a/f^n) = s$ everywhere, which shows that ψ is surjective, hence an isomorphism.

To each ring A we have now associated its spectrum (Spec A, ℓ). We would like to say that this correspondence is functorial. For that we need a suitable category of spaces with sheaves of rings on them. The appropriate notion is the category of locally ringed spaces.

Definition. A ringed space is a pair (X, \mathcal{C}_X) consisting of a topological space X and a sheaf of rings \mathcal{C}_X on X. A morphism of ringed spaces from (X, \mathcal{C}_X) to (Y, \mathcal{C}_Y) is a pair $(f, f^\#)$ of a continuous map $f: X \to Y$ and a map $f^\#: \mathcal{C}_Y \to f_*\mathcal{C}_X$ of sheaves of rings on Y. The ringed space (X, \mathcal{C}_X) is a locally ringed space if for each point $P \in X$, the stalk $\mathcal{C}_{X,P}$ is a local ring. A morphism of locally ringed spaces is a morphism $(f, f^\#)$ of ringed spaces, such that for each point $P \in X$, the induced map (see below) of local rings $f_P^\#: \mathcal{C}_{Y,f(P)} \to \mathcal{C}_{X,P}$ is a local homomorphism of local rings. We explain this last condition. First of all, given a point $P \in X$, the morphism of sheaves $f^\#: \mathcal{C}_Y \to f_*\mathcal{C}_X$ induces a homomorphism of rings $\mathcal{C}_Y(V) \to \mathcal{C}_X(f^{-1}V)$, for every open set V in Y. As V ranges over all open neighborhoods of f(P), $f^{-1}(V)$ ranges over a subset of the neighborhoods of P.

Taking direct limits, we obtain a map

$$\mathcal{C}_{Y,f(P)} = \varinjlim_{V} \mathcal{C}_{Y}(V) \to \varinjlim_{V} \mathcal{C}_{X}(f^{-1}V),$$